
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1991

Reactions of some chromium-oxygen complexes
containing superoxo, hydroperoxo, oxo, and [mu]-
peroxo ligands
Susannah Lesley Scott
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Inorganic Chemistry Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Scott, Susannah Lesley, "Reactions of some chromium-oxygen complexes containing superoxo, hydroperoxo, oxo, and [mu]-peroxo
ligands " (1991). Retrospective Theses and Dissertations. 9682.
https://lib.dr.iastate.edu/rtd/9682

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F9682&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F9682&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F9682&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F9682&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F9682&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F9682&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/137?utm_source=lib.dr.iastate.edu%2Frtd%2F9682&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/9682?utm_source=lib.dr.iastate.edu%2Frtd%2F9682&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

lilWWU.i'-'ijMI'l'""!' 

MICROFILMED 1992 



www.manaraa.com

INFORMATION TO USERS 

This manuscript has been reproduced from the microfQm master. UMI 

films the text directly from the original or copy submitted. Thus, some 

thesis and dissertation copies are in typewriter face, while others may 

be from any type of computer printer. 

The quality of this reproduction is dependent upon the quality of the 

copy submitted. Broken or indistinct print, colored or poor quality 

illustrations and photographs, print bleedthrough, substandard margins, 

and improper alignment can adversely affect reproduction. 

In the unlikely event that the author did not send UMI a complete 

manuscript and there are missing pages, these will be noted. Also, if 

unauthorized copyright material had to be removed, a note will indicate 

the deletion. 

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand corner and 

continuing from left to right in equal sections with small overlaps. Each 

original is also photographed in one exposure and is included in 

reduced form at the back of the book. 

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. Higher quality 6" x 9" black and white 

photographic prints are available for any photographs or illustrations 

appearing in this copy for an additional charge. Contact UMI directly 

to order. 

University Microfilms international 
A Bell & Howell Information Company 

300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 
313/761-4700 800/521-0600 



www.manaraa.com



www.manaraa.com

Order Number 9212185 

Reactions of some chromium-oxygen complexes containing 
superoxo, hydroperoxo, oxo, and /n-peroxo ligands 

Scott, Susannah Lesley, Ph.D. 

Iowa State University, 1991 

U M I  
300 N. Zeeb Rd. 
Ann Arbor, MI 48106 



www.manaraa.com



www.manaraa.com

Reactions of some chromium-oxygen complexes containing 
superoxo, hydroperoxo, oxo, and ^i-peroxo ligands 

by 

Susannah Lesley Scott 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of the 

Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Department: Chemistry 

Major Inorganic Chemistry 

Approved: 

Forth^raduate College 

Iowa State University 

Ames, Iowa 

1991 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

u 

TABLE OF CONTENTS 

LISTOFHGURES v 

LIST OF TABLES ix 

LIST OF SCHEMES x 

DEDICATION xi 

GENERAL INTRODUCTION 1 

Explanation of Dissertation Format 3 

SECTION L CATALYTIC OXIDATION OF THE HYDROXYMETHYL-
CHROMIUM(ffl) ION BY THE SUPEROXOCHROMIUMOH) ION 4 

ABSTRACT 5 

INTRODUCTION 6 

EXPERIMENTAL SECTION 8 

RESULTS 10 

Qualitative observations 10 

Effect of CH3OH on the yield and stability of Cr02^+ 10 

Catalyzed reaction of O2 with CrCH20H2+ 10 

The hydroperoxochromium(in) ion 15 

Uncatalyzed reaction of O2 with CrCH20H2+ 16 

DISCUSSION 21 

Mechanistic considerations 21 

The effect of alcohols on the yield and lifetime of Cr02^+ 25 

The anaerobic chain reaction 26 

REFERENCES 28 



www.manaraa.com

m 

SECTION n. PREPARATION AND REACTIVITY OF THE 
AQUACHROMIUMOV) ION. OXIDATION OF ALCOHOLS. 
ALDEHYDES AND CARBOXYLATES BY HYDRIDE TRANSFER 34 

ABSTRACT 35 

INTRODUCTION 36 

EXPERIMENTAL SECTION 38 

RESULTS 41 

Formation of Cr02+ 41 

Spectrum of CrO^+ 41 

Reaction of CH3OH with Cr02+ 41 

Reactions of other alcohols 49 

Reaction of cyclobutanol 54 

Reactions of HCHO and pivaldehyde 55 

Reactions of HCO2H and H2C2O4 55 

Reaction of (CH3CH2)20 57 

Formation of air-free CrO^+ from Cr02^''' or Cr02Cr4+ 57 

Formation of CrO^+ from Cr2+ and T10H2+ 58 

Intermediacy of Cr02+ in the reaction of HCrO#' with (CH3)2CHOH 58 

DISCUSSION 61 

Reaction of Cr2+ with O2 61 

Mechanism of reaction of Cr02+ with alcohols 64 

Activation parameters 67 

Mechanism of reaction of HCr04" with alcohols and Cr2+ 68 

Oxidation of 1,2-diarylethanols and cyclobutanol 70 

Oxidation of (CH3CH2)20 71 

Mechanism of reaction of CrO^+ with aldehydes 71 



www.manaraa.com

iv 

Mechanism of reaction of CrO^+ with HCO2H and H2C2O4 73 

Summary 73 

APPENDIX: REACTION OF Cr02+WITH PPhs 75 

REFERENCES 77 

SECTION m. REVERSIBLE REDUCTION OF A DICHROMIUM-
SEMIQUINONE COMPLEX PREVIOUSLY MISIDENTIFIED AS 
THE ii-OXO DIMETALLIC ION, CrOCr4+ 83 

ABSTRACT 84 

INTRODUCTION 85 

EXPERIMENTAL SECTION 86 

RESULTS 88 

Composition 88 

Reversible redox chemistry 88 

Electrochemistry 91 

Kinetics 94 

Decomposition products 95 

DISCUSSION 97 

The nature of Complexes I and n 97 

Redox chemistry 100 

Quinone oxidation of ethanol catalyzed by chromic ion 101 

Coordinative stabilization of radicals 102 

REFERENCES 104 

GENERAL SUMMARY 

ACKNOWLEDGEMENTS 

107 

108 



www.manaraa.com

LIST OF FIGURES 

Figure I-l. Kinetic trace at 290 nm for the reaction between CrCH20H2+ and 

Cr02^+ in the presence of a limiting amount of O2. Experimental 

conditions: 0.10 mM CrOzZf, 0.42 mM CrCH20H2+, 0.2 M CH3OH, 

0.10 M HCIO4,0.34 mM O2. Optical pathlength: 1 cm. 

Figure 1-2. Kinetic trace at 290 nm for the reaction between CrŒ20H2+ and 

Cr02^+ in the absence of O2. Experimental conditions: 0.043 mM 

Cr022+, 0.098 mM CrCH20H2+, 0.02 M CH3OH, 0.013 M HCIO4. 

Optical pathlength: 2 cm. 

Figure 1-3. Dependence of the pseudo-first-order rate constant for the reaction 

between CrCH20H2+ and 002^+ on the concentration of 002^+. 

Experimental conditions: 0.42 mM CrCH20H2+, 0.2 M Œ3OH, 0.10 

M HCIO4.0.3 -1.2 mM O2,25.0 °C. 

Figure 1-4. (a) Spectrum of reaction mixture recorded immediately after the catalytic 

reaction (upper line) and 1.5 hours later (lower line); (b) Difference 

between the absolution spectrum of Cr02H2+ and its decomposition 

products, obtained by subtraction of the spectra in (a). The initial 

concentrations of reagents were: 0.24 mM CrCH20H2+, 0.020 mM 

Cr02^+, O.I6MHCIO4,0.45 mM O2. Optical pathlength: 5 cm. 



www.manaraa.com

vi 

Figure 1-5. Dependence of the pseudo-first-order rate constant for the reaction 

between CrCH20H2+ and O2 on the concentration of O2. Experimental 

conditions: 0.055 mM CrCH20H^+, 0.10 M HCIO4,70 mM CH3OH, 

lniMFe2+,25.0°C. 19 

Figure H I. Difference spectra of Cr02+ formed by stopped-flow mixing of 0.3 mM 

Cr2+ and 0.26 mM Ozin 1.0 M HCIO4. Time interval between spectra is 

20 s. Spectra were obtained by difference from the spectrum at 60 s. The 

yield of Cr02+ is 15 % based on total Cr. Pathlength 2cm. 42 

Figure II-2. Formation of Cr022+ (^max 290,245 nm) fix)m the reaction between 1 

mM CH3OH, 1.26 mM O2 and 0.1 noM Cr02+, in 0.10 M HCIO4. 

Spectra were recorded at 10 s intervals in a 1 cm cell. 
43 

Figure II-3. Dependence of the pseudo-first-order rate constants for the oxidation of 

CH3OH by Cr02+ on the concentration of CH3OH. Conditions: 1.26 

mM O2,0.10 M HCi04,0.90 M LiC104,25.0 °C. 44 



www.manaraa.com

vii 

Figure II-4. Kinetic trace showing the reaction of CrO^+ with 0.19 M CH3OH in the 

presence of an insufficient excess of O2 (0.13 mM). The mixture of 

Cr02+ and Cr02^+ was generated by stopped-flow mixing of 0.08 mM 

Cr2+ with 02. The Cr^+ product from the reaction of CrO^+ with 

CH3OH consumes Cr02^+ autocatalytically. [HCIO4] = 0.10 M, 25 °C, 

pathlength = 2 cm. 

Figure 115. Dependence of the corrected rate constant, kcoir = kbbs - kfCABTS^-] on 

the concentration of CH3OH. ABTS^- is a kinetic probe for the reaction 

between Cr02+and CH3OH. [HCIO4] = O.IOM, 25 °C. Slope = 28 L 

mol"^ s'k 

Figure II-6. Ionic strength dependence of the observed rate constant for the oxidation 

of 9 mM (CH3)2CH0H by Cr02+ at 25 °C. Since there is no 

dependence of the rate constant on [H+], the ionic strength was vmied 

either by varying [HCIO4] or [LiC104]. 

Figure II-7. Dependence of the bimolecular rate constant for the oxidation of 

(CH3)2CH0H by Cr02+ on temperature. All measurements were made 

in a 1 cm spectrophotometer ceU containing 0.10 M HCIO4/O.9O M 

LiC104 saturated with O2. The inset shows a plot of ln(k/T) versus 

temperature, with slope AH$ /R = 4007 K'l and intercept 

(AS^/R)+ln(R/Nh) = 10.277. 



www.manaraa.com

viii 

Figure II-8. Formation of Cr02^+ (^max 290,245 nm) during tiie oxidation of 0.21 

M (Œ3)2CH0H by 0.069 M HCrO^- (Xmax 345,255 nm). The solution 

contained 2.0 M HCIO4 and 1.26 mM O2. Spectra were recorded at 4 

min intervals in a 1 cm cell. 60 

Figure m i. Reversible spectral changes upon oxidation of Complex I and reduction 

of Complex n. (a) spectrum of 0.19 mM Complex I in 0.10 M 

HCIO4/O.9O M LiC104,1 cm cell; (b) spectrum of Complex n obtained 

by adding Fe3+ to the solution of Complex I; (c) spectrum of Complex I 

obtained by adding Cr2+ to the deaerated solution of Complex II. 89 

Figure m-2. Spectrophotometric titration of airfree 0.195 mM Complex n with Cr^+ 

in 0.10 M HCIO4/O.9O M LiC104. Pathlength 1 cm. 92 

Figure m-3. Cyclic voltammograms of (a) Complex I, and (b) Complex II, in 0.10 

M HCIO4/O.9O M LiC104 at a glassy carbon working electrode and a 

Ag/AgCl reference electrode. Both complexes were purified by ion-

exchange. 93 



www.manaraa.com

ix 

LIST OF TABLES 

Table II I. Bimolecular rate constants for the oxidation of alcohols by Cr02+ 50 

Table II-2. Rate constants for the oxidation of selected substrates by CrO^+ 

various temperatures 53 

Table II-3. Activation parameters for the oxidation of organic substrates by 

hydride transfer 54 

Table II-4. Yield of Cr02^'''fiom the oxidation of 2-propanol by HCr04" 59 

Table III-I. Spectral bands and extinction coefficients for fiee quinones and 

quinone complexes,CrQCr^+ and CrQCr5+ 90 

Table III-2. Electrochemical data for CrQCt^ and CiQG5+ 94 



www.manaraa.com

X 

LIST OF SCHEMES 

Scheme I-l. Mechanism of CxOp-* stabilization via CH3OH trapping of Cr02+ 26 

Scheme 1-2. Mechanism of the airfree chain reaction between Cr02^+ and 

CrCH20H2+ 27 

Scheme H I. Mechanism of oxidation of CP-* by O2 61 

Scheme n-2. Literature mechanism for oxidation of alcohols by acid chromate 68 

Scheme n-3. Revised mechanism for oxidation of alcohols by acid chromate 69 

Scheme 11-4. Mechanism for the Cr022+-catalyzed autoxidation of PPhg 75 

Scheme III-l. Proposed formation and catalyzed aquation of CrOCr^+ 97 

Scheme in-2. Structure and reversible oxidation of a dichromium(ni) hydroquinone 99 

complex 



www.manaraa.com

xi 

DEDICATION 

This thesis is dedicated to Earl Laird Smith, whose faith in me made this work possible. 



www.manaraa.com

1 

GENERAL INTRODUCTION 

The reaction of reduced metal ions with molecular oxygen is a fundamental chemical 

process. Atmospheric oxygen can destroy expensive industrial catalysts, or it can be vital to 

their catalytic action. Oxygen is necessary for the functioning of some metalloenzymes, but its 

reaction with others leads to highly toxic products. Enzymes exist whose principle function is 

believed to be removal of these toxic products, and the reaction usually requires a coordinated 

metal ion. Finally, the presence or absence of oxygen can be crucial to chemical synthesis. 

Oxidations by molecular oxygen are complex, multistep reactions. Oxygen requires 

four electrons to become water, also, an 0-0 bond must be cleaved. Neither of these processes 

can be accomplished by a single metal ion, therefore intermediates must be formed. The 

intermediates may be partially-reduced but unbound oxygen species, such as superoxide, 

hydrogen peroxide or hydroxyl radical. All of these have been prepared independently and 

their properties are well-known. Sometimes the metal ion is directly involved in the 

intermediates, and occasionally novel metallic species can be isolated. 

This work concerns the nature and properties of the metallic intermediates formed 

during the reaction of Cr(H20)62+ with O2. The reaction is extremely rapid, a feature which 

has hindered efforts to identify intermediates arid elucidate the mechanism. The overall reaction 

is represented by equation 1. 

4Cr(H20)62+ + 02 -^ 2 (H20)4Cr(0H)2Cr(H20)44+ + 6H2O (1) 

The metallic product, Cr(0H)2Cr4+, is a bis-^i-hydroxo dimer of Cr(IlI) identified by ion-

exchange and isotopic-labelling studies. Since the d^ electron configuration makes Cr(in) 

complexes extremely inert towards substitution, it was proposed that the dimer must arise from 

oxidation of Cr2+ by a Cr(IV) intermediate. The electron transfer event in the precursor 
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complex creates two Cr(III) centers whose ligand environments, including two |i-hydroxo 

bridges, are frozen. The Cr(IV) intermediate was never isolated, and was presumed highly 

unstable and far too reactive for direct study. 

Recently, a stable adduct between Cr2+ and O2 which has the spectral and 

thermodynamic characteristics of a superoxochromium(III) ion was identified. Kinetic studies 

showed this species to be a fairly good oxidant, witii both outer-sphere and inner-sphere 

electron transfer capabilities. Its principal mode of decomposition is homolysis, equation 2, 

followed by reaction of CrOi^^ with Cr2+. 

Cr022+ Cr2+ + 02 (2) 

Thus the superoxochromium(III) ion is a good candidate for first intermediate in the reaction of 

Cr2+ with O2. The reaction of Ct02^* with Cr2+ jg too fast for conventional mixing 

techniques, so further information about the mechanism was not accessible from kinetic 

studies. A product of this reaction which has been overlooked until this study is the 

aquachromium(rV) ion, a potent oxidant which reacts rapidly with Cr2+. 

Oxidation of most organic substrates by O2 is slow because of the spin mismatch 

between its triplet ground state and the closed valence shells of most stable organic molecules. 

When O2 is coordinated to (and perhaps reduced by) a metal ion, the spin barrier is removed, 

and the reaction rate may be substantially enhanced. When the reduced metal ion is regenerated 

as a product of the oxidation reaction, it may react with O2 again, thus creating a catalytic cycle. 

Metal complexes which undergo these reactions are oxygen earners as well as activators. In 

this work, the reactions of Cr complexes as oxygen carriers and activators was investigated. 

The reactivity of the various intermediate oxometal species also bears on the mechanism 

of oxidation of organic substrates by chromic acid, a widely-used organic synthetic technique. 
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This reaction has been investigated by many workers for over five decades, however, their 

efforts were limited by lack of direct information about the intermediates involved. It is now 

accepted that chromic acid reacts with alcohols to form an ester, which then decomposes by a 

concerted two-electron path to give Cr(IV). The fate of Cr(IV) has been variously proposed as 

oxidation by chromic acid, disproportionation, or reaction with the substrate. Recent work 

focused on the last possibility, and it was concluded that Cr(IV) oxidizes organic substrates to 

alkyl radicals. In the present work, the independent preparation of aquachromium(IV) 

permitted a direct investigation of this reaction, and the results, which are not in agreement with 

previous conclusions about the reactivity of Cr(IV), are discussed. 

One of the proposed intermediates in the reaction of Cr^+ with O2, CrOCr4+, has never 

been observed under reaction conditions. In particular, the reaction between CrO^+ and Cr2+ 

does not yield the species described in the literature as CrOCr4+. The intense color and 

oxidizing ability of the proposed complex was claimed to be the result of strong electronic 

interactions in the |i-oxo bridge. In fact, both properties are due to a bridging semiquinone 

radical, which is reversibly reduced to bridging hydroquinone. The incorrect previous 

characterization of this species highlights the difficulties involved in interpreting the reaction 

chemistry of all of the highly soluble and unstable chromium-oxygen compounds. 

Explanation of Dissertation Format 

The dissertation is organized into three sections following the "Alternate Thesis 

Format". Each section corresponds to a manuscript submitted for publication in either/. Am. 

Chem. Soc. or Inorg. Chem. Each section is self-contained with its own tables, figures, 

schemes and references. All die work described here was performed by S. L.Scott. 
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SECTION I 

CATALYTIC OXIDATION OF THE HYDROXYMETHYLCHROMIUM(III) 

ION BY THE SUPEROXOCHROMIUM(III) ION 
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ABSTRACT 

The superoxochromium(in) ion, Cr02^+, is an efficient catalyst for autoxidation of the 

hydroxymethylchiomium(in) ion, CrCH20H2+, in aqueous solution. The reaction involves 

one-electron oxidation of CrCH20H2+ by Ci02^+, k = 137 L mol'l s"^ to yield Cr2+, CH2O 

and a novel hydroperoxochroimum(III) ion, Cr02H2+. The Cr2+ produced reacts rapidly with 

O2 to regenerate the catalyst Cr02^t When O2 is depleted, the Cr2+ reacts instead with 

Cr02^+ to produce the aquachromium(IV) ion, CiCP*. This initiates a chain reaction that 

rapidly consumes the remaining CrO^+ and a stoichiometric amount of CrŒ20H2+. 
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INTRODUCTION 

Molecular oxygen is a powerful oxidant if not always a rapid one. Recent studies of 

the complexes formed between metal ions and molecular oxygen ̂  have shown that 

coordination and partial reduction activate O2 towards many organic and inorganic substrates. 

Such reactions, important both industrially and biologically, involve a number of intermediates, 

whose lifetime and reactivity depend dramatically on the metal and ligands. Macrocycles, 

especially poiphyrins, have a strong stabilizing effect on such intermediates, and the literature 

abounds with examples of metal-poiphyrin complexes containing oxygen in the superoxo, 

peroxo or 0x0 forms, and the metal in any of a number of unusual oxidation states.^ 

Much less information is available on similar chemistry in non-porphyrin systems, and 

especially in aqueous solution, mostly because the intermediates involved are usually too short

lived to be observed directly. With a few exceptions^-^-S the work reported in this area deals 

almost exclusively with oxygen-carrying properties of metal-oxygen adducts,^'^ and not with 

mechanistic studies of their electron-transfer chemistry. 

The reaction of Cr^+ with O2 yields a long-lived superoxochromium(ni) ion,7 CrOz^^, 

eq 1 (here and elsewhere the coordinated water molecules are omitted). 

Cr2+ + 02 Cr022+ (1) 

The Cr02^+ has been identified and characterized as a complex of chromium(III) with 

superoxide.^ Unlike most of the other transition metal-oxygen adducts, Cr02^+ can be 

handled at room temperature even under air-free conditions since the reverse reaction is so 

slow, k-i = 2.5 X 10-4 s*^5 This makes it possible to study its chemistry without interference 

from free O2 and in the absence of rapid oxygen binding/release equilibria. The thermal 

decomposition of Cr02^+ and its reactions witii inorganic reductants such as hydrazine. 
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Ru(NH3)6^+, Co(sep)2+, V2+, Fe2+, etc. have been studied.^ Based on the kinetic and 

spectral evidence obtained in that work it was proposed that one-electron outer-sphere 

reduction of Cr02^^ yields a long-lived hydroperoxochromium(in) ion, Cr02H2+, which 

could not, however, be characterized owing to the extremely low concentrations of its 

immediate precursor, Cr02^"*", available at that time (typically ^ 40 pM). 

In this chapter, kinetic results are reported for the autoxidation of CrŒ20H2+, 

consisting of an uncatalyzed path and a path catalyzed by A mechanistic interpretation 

for the catalysis is presented, as well as conclusive evidence for the formation of Cr02H^+ as a 

product at millimolar concentrations. 

This chapter also contains an improved metiiod for the preparation of002^"^. This 

procedure permits 10-fold higher concentrations of the desired product (up to 0.5 mM) than 

was previously possible, with no undesirable chromium side-products such as chromate. 

Also, tiie presence of alcohols in the reaction medium stabilizes Cr02^+ towards spontaneous 

decomposition in aerated solutions. 
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EXPERIMENTAL SECTION 

Dilute solutions 40 |iM) of Ci02^+ were initially prepared by injecting into 0.1 

M aqueous HCIO4 saturated with O2» as described previouslyHigher concentrations could 

not be prepared in this way, because the yield of Cr02^^ decreases and those of Cr(in) and 

HCr04" increase as the total concentration of Cr increases.^ As described later in greater detail, 

it was found that much higher concentrations of002^* can be prepared by essentially the 

same method, provided the solution contains a small amount of an alcohol. Later preparations 

typically had 0.1 -1 M CH3OH. Concentrations of Cr02^^ were determined 

spectrophotometrically (A.max 290 nm, e = 3.1 x 10^ M-l cm-^; Xmax 245 nm, e 7.4 x 10^ M-l 

cm"l).5.7 

The yellow hydroxymethylchromium ion, CrCH20H2+, was prepared in solution® 

from 0.02 M Cr2+, 0.01 M H2O2 and 1 M CH3OH, and was standardized 

spectrophotometrically (Xmax 392 nm, e = 570 M-1 cm-1; Xmax 282 nm, e = 2.4 x 10^ M-1 cm-

^).8.9 In several cases the complex was purified by ion-exchange on a 10 cm column of 

Sephadex SP C-25 cation-exchange resin, from which it was eluted with 0.2 M HCIO4. The 

behavior of the purified and unpurified complexes was identical in all of the reactions studied 

and in most preparations the ion-exchange step was omitted. The deuterated complex 

CrCD20D2+ was prepared by the same method as CrCH20H2+, except that D2O and CD3OD 

were substituted for H2O and CH3OH. The preparation of CrCD20H2+ used H2O and 

CD3OD. The preparation of CrCH20CH3 used CH3OCH3 (as a saturated aqueous solution) 

instead of CH3OH. 

[Co(NH3)5F](C104)2 was prepared from [Co(NH3)5F](N03)2^® and HCIO4. 

Solutions of Co(NH3)5F2+ were prepared daily. Dilute solutions of H2O2 were prepared from 

commercially-available 30 % H2O2 and were standardized by r/S203^' titration daily. 

Alcohols were purchased froni commercial suppliers and used as received. 
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Spectrophotometric titration curves and Idnedc traces were obtained by measuring the 

change in absorbance at 290 nm, using a Gary 219 UV-visible spectrophotometer equipped 

with an internal timer and a thermostatted cell-holder. At 290 nm, both Cr02^+ and 

CrŒ20H2+ contribute to the total absorbance. All reagents except CrŒ20H2+ were mixed 

in a spectrophotometer cell capped with a septum and saturated with either oxygen or argon. 

Air-fiee CrŒ20H2+ was injected by syringe and the solution was shaken gently to commence 

the reaction. For the determination of the kinetic isotope effect in the catalyzed autoxidation of 

CrŒ20H2+, the kinetics were also determined on CrCD20D2+ in D2O and CrCD20H2+ in 

H2O. The total deuterium content in the former system was >96%. All the kinetic 

experiments were performed at 25.0 ±0.1 °C. Pseudo-first-order rate constants were obtained 

graphically as the negative of the slope of ln(At - Aoo) versus tipie, or as a parameter from the 

nonlinear least-squares fit to a single exponential rate law. Oxygen concentrations were 

measured with a dissolved-oxygen electrode from Hach Chemical Company. 

Inorganic products were identified and their concentrations determined 

spectrophotometrically. Oxidizing titer was evaluated by deaerating the product solution with 

argon, then adding an excess (ca. 1 g) of solid sodium iodide. The absorbance at 350 nm due 

to triiodide (e = 2.54 x 10^ M"l cm"^)^l was measured to determine the concentration of iodine 

in solution. Formaldehyde was determined by the chromotropic acid analysis. 



www.manaraa.com

10 

RESULTS 

Qualitative observations 

The reaction between CrCH20H^+ and Cr02^+ in the presence of excess O2 was 

accompanied by an exponential decrease in absorbance at 290 nm. When O2 was not in 

excess, the reaction profile showed a dramatic break. Figure I-l. In the absence of O2, the 

reaction was fast and autocatalytic, Figure 1-2. 

pffgçt 9f CHaOH on thg yigld and stability of QrOa^t 

As already noted in earlier work,^ the reaction of Cr2+ with O2 in dilute aqueous 

HCIO4 (0.01 - 0.10 M) yielded Cr02^+ quantitatively only at very low concentrations of Cr2+ 

(g 40 fiM). At higher concentrations, large amounts of Cr(III) and HCrO^' (Xmax = 345 nm, e 

= 1.45 x 103 M'l cm-1) formed at the expense of CrO^*. Ihe addition of as littie as 0.01 M 

CH3OH to the reaction mixture prior to or immediately after the injection of Cr2+ resulted in 

greatiy improved yields of Cr02^+. Up to 0.5 mM Cr02^+ was prepared in tiiis way, with no -

contamination by HCr04". Other alcohols, such as Œ3CH2OH and (Œ3)2CHOH, had the 

same effect on the yield of Ci02^^. In addition, the decomposition of Cr02^+ was slower in 

oxygenated solutions that contained alcohol than in those that did not 

Catalvzed reaction of O2 with CrCH20H2+ 

When Cr022+ (0.008 - 0.12 mM) and CrCH20H2+ (0.13 - 0.93 mM), are mixed in the 

presence of excess O2 (0.26 -1.27 mM), a straightforward catalytic process takes place, eq 2. 

The Ci€)2^+ is recovered fully at die end of the reaction, and CH2O is produced quantitatively, 

i.e., [CH20]oo ^ 0.9 [CrŒ20H2+]o. 
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Figure I-l. Kinetic trace at 290 nm for the reaction between CrCH20H2+ and Cr02^+ in the 

presence of a limiting amount of O2. Experimental conditions: 0.10 mM 

Cr022+, 0.42 mM CrCH20H2+, 0.2 M CH3OH, 0.10 M HCIO4, 0.34 mM 

O2. Optical pathlength: 1cm. 
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Figure 1-2. Kinetic trace at 290 nm for the reaction between CrCH20H2+ and Cr02^"*' in the 

absence of O2. Experimental conditions: 0.043 mM Cr02^+, 0.098 mM 

CrCH20H2+, 0.02 M CH3OH, 0.013 M HCIO4. Optical pathlength: 2 cm. 
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Cr022+ 

CrCH20H2+ + O2 -» Cr02H2+ + CH2O 

k2 

(2) 

-d[CrŒ20H2+]/dt = kobs [Ci€H20H2+] (3) 

kobs = ko + k2[Cr022+] (4) 

The kinetics obey the first-order rate law of eq 3 to >90% completion. The rate constant k2, eq 

4, is linearly dependent on [Cr02^+] and independent of [O2], [H+], and [CH3OH]. The rate 

constant k2 increases with increasing ionic strength (HCIO4 + LiC104) at constant [HCIO4] = 

0.10 M. The data in Figure 1-3 yield k2 = 137 ± 5 L mol*^ s'l at p, = 0.10 M. The intercept kg 

is a summation of terms corresponding to the known hydrolysis of CrCH20H2+ 8-10 and direct 

autoxidation of CrŒ20H2+, discovered in this work and described subsequently. As seen in 

Figure 1-3, the kb terms contributes little to the overall rate constant under the experimental 

conditions. 

In one experiment the change in oxygen concentration was monitored by use of a 

dissolved-oxygen electrode. The data yielded k2 = 140 L mol'^ s"^ in excellent agreement 

with the value determined spectrophotometrically. 

The value of k2 is virtually unaffected by deuteration at carbon. For the reaction 

between CrCD20H2+ and Cr02^+, k2 = 122 L mol'l s'^ for a primary isotope effect kn/ko = 

1.1. However, the value of k2 for the reaction of CrCD20D2+ in D2O is 76 L mol"^ s'l; 

therefore for 0-deuteration, the kinetic isotope effect is 1.8. 
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Figure 1-3. Dependence of the pseudo-first-order rate constant for the reaction between 

CrŒ20H?+ and Ci02^^ on the concentration of Cr02^'''. Experimental 

conditions: 0.42 mM Q€H20H2+, 0.2 M CH3OH, 0.10 M HCIO4,0.3 -1 

mM02,25.0°C. 
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The reaction of the 0-methylated complex, CrŒ20Œ32+, with Cr02^^ is much 

slower than the reaction of CiCH20H^+. Also, the first-order plots for the former reaction 

conducted in the presence of a large excess of are non-linear. 

The hvdroperoxochromiumfim ion 

The identification of the chromium product as CrOzH^^ is based on the following 

evidence. After completion of reaction 2 the iodometric analysis of spent solutions confirmed 

the presence of two oxidizing equivalents per mole of initial CrCH20H^+ in addition to the 

oxidizing equivalents present due to the catalyst, Ci02^+. The reaction of the oxidizing 

product with iodide under a given set of conditions (0.10 M H+, 5.0 mM I ) is over in a few 

seconds. The product is thus clearly not free H2O2, whose reaction with iodide was measured 

under identical conditions, and took several hours to go to completion. 

The most convincing evidence for this product species being an intact one-electron 

reduction product of Cr02^+ comes fiiom its reaction with Ce(IV). When one equivalent of the 

latter is added to the solution after completion of reaction 2, Ct02^+ is produced in a 

concentration comparable to (~ 75%) that of CrCH20H2+ consumed, consistent with eq 5. 

Cr02H2+ + Ce(IV) -> Cr022+ + Ce(m) + H+ (5) 

Some decay of Cr02H^^ takes place on the time scale of the experiment, see later. 

Independent experiments showed that the stoichiometric reaction of002^+ with 

Ru(NH3)6^+ also yields Cr02H2+, eq 6, as proposed previously.5c Subsequent reoxidation 

by Ce(IV) again restores the spectrum of Cr02^+. 

Cr022+ + RU(NH3)62+ +H+ -» Cr02H2+ + Ru(NH3)63+ (6) 
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After reaction 2 is over, the absorbance in the visible range décrétés with a 

simultaneous loss of the oxidizing titer of the solution. This result is reasonably attributed to 

the decomposition of Cr02H^t The final spectrum is that of Cr3+, although the presence of 

some other low-absorbing Cr products has not been ruled out. Figure 1-4 shows the spectrum 

measured immediately after completion of reaction 2, the final spectrum obtained 1.5 hours 

later, and a difference spectrum of Cr02H2+. A study of the decomposition and reactivity of 

Cr02H2+ will be reported separately. ̂ 3 

Uncatalvzed reaction of with CrCH;0H2+ 

Air-fi-ee solutions of CrCH20H2+ slowly decompose by acid-dependent acidolysis to 

yield Cr3+ and Œ3OH.8-IO xhe decomposition of CrŒ20H2+ is strongly accelerated by O2 

and yields HCHO. In 0.1 M H+ the respective rate constants for decomposition of 0.23 mM 

QCH20H2+ in argon-saturated and 02-saturated solutions are 1 x 10-3 s'^ and 8 x 10 3 s-^. 

The reaction in the presence of O2 appears to have a minor autocatalytic component, and the 

rate constant evaluated near the end of the reaction was ~10% greater than that obtained from 

the initial portion of the trace. The final spectrum showed the presence of some Cr02^+ 

0.06 |iM) among the reaction products. Oxidation of the spent solution by Ce(IV), eq 5, 

produced a clean spectrum of 0.16 mM Cr02^+, indicating that Cr02H2+ is a major chromium 

product The overall reaction can thus be written as in eq 7. 

CrCH20H2+ + O2 Œ2O + C1O2H2+ (+ Cr022+ + Cr3+) . (7) 
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Figure 1-4. (a) Spectrum of reaction mixture recorded immediately after the catalytic 

reaction (upper line) and 1.5 hours later (lower line); (b) Difference between the 

absorption spectrum of Cr02H2+ and its decomposition products, obtained by 

subtraction of the spectra in (a). The initial concentrations of reagents were: 

0.24 mM CrCH20H2+ 0.020 mM Cr022+, 0.16 M HCIO4,0.45 mM O2. 

Optical pathlength: 5 cm. 
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The sum of the concentrations of Cr02^+ and Cr02H2+, 0.16 mM, is less than the 

amount of CrCH20H2+ initially present, 0.23 mM. The missing Cr is present as Cr(ni), 

ormed both by parallel acidolysis of CrCH20H^+ and by decomposition of CrC)2H2+, which 

appears to be complete in less than an hour. Since it takes ~10 min for the reaction of eq 7 to 

go to completion, some CrOzH^^ decomposed before the addition of Ce(IV). 

The presence of Cr02^^ among the reaction products, and the established catalytic 

effect of this species on the reaction of CrCH20H^+ with O2, explain the appearance of the 

kinetic traces. As the uncatalyzed reaction of eq 7 produces more and more Cr02^+, the 

contribution from tiie catalytic pathway of eq 2 becomes increasingly important as the reaction 

nears completion. 

In order to determine the rate constant for reaction 7 without complications from the 

catalytic path, experiments were conducted in the presence of Fe2+, a good scavenger for 

Cr02^+.^(^ Under these conditions the QCH20H2+ disappears in two parallel processes, 

acidolysis^'^ and reaction 7. All the Cr02^+ produced in eq 7 is destroyed rapidly by Fe2+. 

As expected, in the presence of a large excess ofFe^+ the disappearance of CrŒ20H2+ 

followed first-order kinetics cleanly according to the rate law of eq 8. The rate constants kg 

were independent of the concentration of Fe^+ (1.0 -100 mM), and yielded kg = 5.0 ± 0.3 L 

mol'l s"l in 0.10 M HCIO4, Figure 1-5. 

-d ln[CrŒ20H2+]/dt = ko = ka + koj [O2] (8) 

The reaction of CrCH20H2+ with Cr02^+ in the absence of O2 is strikingly different 

from the reaction in oxygenated solutions. First, the removal of O2 converts the catalytic 

system of eq 2 into a non-catalytic one. The stoichiometry of eq 9 was determined by 
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Figure 1-5. Dependence of the pseudo-first-order rate constant for the reaction between 

CrŒ20H2+ and 0% on the concentration of O2. Experimental conditions: 

0.055 mM QCH20H2+, 0.10 M HCIO4,70 mM CH3OH, 1 mM Fe2+, 25.0 

°C. 
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CrŒ20H2+ + 2Cr022+ ^ CHgO + G(ni) products (9) 

spectrophotometric titration using 002^+ as the titrant, as well as by formaldehyde analysis. 

Both types of experiments were conducted at low concentrations of CH3OH (0 - 0.01 M). In 

the presence of ^ 0.1 M Œ3OH, the stoichiometric ratio A[Cr02^+]/A[CrCH20H2+] was 

4.0, and the yield of CH2O was 3 moles per mole of CrŒ20H2+. Thus the reaction induces 

the oxidation of CH3OH, eq 10. 

CrCH20H2+ + 4 0022+ + 2 CH3OH 3CH2O + Cr(III) products (10) 

The second effect is kinetic. Reaction 9 is much faster (ti/2 = 1 - 2 s) in the absence of 

O2 under conditions where ti/2 = 25 - 30 s in its presence. The best way to illustrate the effect 

of the removal of O2 is to conduct the catalytic reaction in the presence of a limiting amount of 

O2. The kinetic trace, Figure I-l, starts out smoothly as expected for the reaction of eq 2. As 

soon as €>2 is depleted the absorbance drops abruptiy, signalling that all the 002^+ and an 

equivalent amount of CrŒ20H2+ have been consumed suddenly in reactions 9 or 10. 

When the air-free reaction between 002^+ and CrŒ20H2+ was conducted in the 

presence of 0.04 M (NH3)5CoF2+, a good scavenger for Cr2+, the disappearance of 002^+ at 

290 nm took place with a rate constant of 122 L mol ^ s"^ a value close to that obtained in the 

catalytic system in the presence of O2. Approximately 2 mM Co(NH3)5F2+ is required to 

compete effectively witii 0.15 mM 002^+ for Cr2+. Based on the known rate constant for the 

reaction between Co(NH3)5F2+ and Cr2+, k = (9 ± 1) x 10^ L mol'l s'1,14 the rate constant for 

the reaction of002^''" with Cfi* is estimated to be 2 x 10^ L mol"^ s'k 
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DISCUSSION 

Mechanistic Considerations 

Cr02^^ is quite an effective catalyst for the oxidation of CrCH20H2+ by O2. At 0.10 

M ionic strength the rate constants for the catalyzed and uncatalyzed reactions are ka = 137 L 

mol'l s"^ and k© = 5.0 L mol"^ s"^ 

A straightforward mechanism for the catalyzed reaction that accommodates all the 

experimental observations is shown in eq 11 and 1. 

k2 

CrCH20H2+ + Cr022+ -> Cr2+ + CH2O + Cr02H2+ (11) 

The one-electron oxidation of CrCH20H2+ by 002^+ produces Cr2+ and Cr02H?+. The 

Cr2+ then reacts rapidly with O2 (ki = 1.6 x 10* L mol'l s-l)7 to regenerate the catalyst 

Cr02^'''. It is quite reasonable that the reaction of eq 11 should produce Crin the oxidation 

state 2+, given that reactions of CrCH20H2+ with other oxidants, such as Cu2+,8b Fe^+.Sb 

and VO2+ also yield Cr2+ as the initial product Also, the quantitative formation of CH2O 

and Cr02H2+ confirms the overall stoichiometry of eq 11. 

The exact mechanism of reaction 11 is more difficuh to ascertain. Two possibilities 

seem particularly appealing. The first is an outer-sphere reaction, eq 12, which would yield 

Cr02^ and CrCH20H3+. In the rapid subsequent steps, eq 13 and 14, the reaction of Cr02+ 

with H+ yields Cr02H2+, and CrCH20H3+ undergoes a rapid intramolecular electron transfer 

producing Cr2+, CH2O and H+. 



www.manaraa.com

22 

Cr022+ + CrCH20H2+ ^ Cr02+ + CrŒ20H2+ 

Cr02+ + H+ Cr02H2+ 

CrŒ20H2+ -> Cr2+ + Œ2O + H+ 

(13) 

(14) 

(12) 

The reduction potentials and self-exchange rate constants for the two reactants in eq 12 

are not known, which rules out a possibility of estimating the expected rate constant for the 

process. However, both outer-sphere reduction of Ct02^* and outer-sphere oxidation of 

CrCH20CH32+, the 0-methylated analogue of CrŒ20H2+, have been demonstrated before. 

This, at least in principle, makes reaction 12 feasible. For example, outer-sphere reductants 

Co(sep)2+, V2+, and Ru(NH3)62+ reduce 0022+ with rate constants in the range 10^ -10® L 

mol'^ s"1.5c Similarly, Ru(bpy)33+ (EO3+/2+ = 1.26 V)16 oxidizes CrŒ20CH32+ to 

CrŒ2C)CH33+ with a rate constant k = 1.0 x 10^ L mol'l Subsequent rapid 

decomposition of CrCH20CH33+ takes place in a reaction analogous to eq 14 to yield Cr2+, 

CH2O and CH3OH.17 The reduction potential of the Cr022+/+ couple^^ is probably much 

lower than that of Ru(bpy)33+/2+, and the lower reactivity of the former towards CrŒ20H2+ 

was to be expected. 

Another feasible mechanism for reaction 2 is depicted below. The attack of Cr022+ at 

the alcoholic OH group of CrCH20H2+ results in hydrogen transfer that yields Cr02H2+. The 

other products, CH2O and Cr2+, can be formed either concertedly, eq 15, or by a rapid 

subsequent decomposition of the transient CrŒ202+. 

CrCH20H2+ + Cr022+ -> [ CrCH20 — H — OOCr ]4+ 

-^Cr2+ + CH2O + H02Cr2+ (15) 
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The mechanism of eq 15 derives some support from the fact that replacement of 

CrCH20H^+ in eq 2 by the 0-methylated analogue, CrŒ20CT32+, results in a slow, 

kinetically ill-behaved reaction. The presence of the alcoholic OH group thus seems to be 

crucial mechanistically. If the outer-sphere mechanism of eq 12 were to hold, one would 

expect the two organochromium complexes to behave similarly, since both their reduction 

potentials and self-exchange rate constants should be comparable. 

A hydrogen atom transfer mechanism involving the 0-D bond is also consistent with a 

kinetic isotope effect kn/ko > 1 for CrCD20D2+. The observed effect is, however, a 

composite of the solvent effect, arising firom deuteration of H2O coordinated to both reactants, 

and the possible genuine effect arising from hydrogen transfer. The value kn/ko = 1.8 is not 

sufficiendy large to draw unequivocal mechanistic conclusions. 

The rate constant for the direct autoxidation of CrŒ20H2+, kQ^ = 5.0 L mol"^ s"^ 

was determined in the presence ofFe^+ to scavenge any Cr02^+ produced and thus eliminate a 

possible contribution from the catalytic pathway of eq 2. However, the rate constants obtained 

in the presence and absence of Fe2+ were comparable and only a hint of autocatalysis was 

obtained under the latter conditions. The yield of Cr02^''' was < 25% of total chromium. All 

of these results indicate that the reaction proceeds by at least two pathways, only one of which 

produces that appears as Cr02^+ in oxygen-containing solutions. This reaction might be 

an outer-sphere process, eq 16, yielding Cr2+, CH2O and 02". The latter would be converted 

rapidly to HO2 which may either disproportionate^  ̂to O2 and H2O2 or oxidize a second 

molecule of CrCH20H2+. 

CrCH20H2+ + O2 + CH2O + H02* (16) 



www.manaraa.com

24 

Most of the major chromium product, Cr02H2+, thus had to be formed by a route 

different from the Cr02^^-catalyzed route of eq 2. An interesting possibility is a direct attack 

by 02 at the substitutionally labile^ position trans to the CH2OH group of the 

organochromium complex, eq 17, followed by the rapid protonation of Cr02^. Attack at the 

CH2OH group that would yield HO2 directly appears much less likely, since this would be an 

extremely unusual hydrogen atom abstraction by molecular oxygen. 

O2 + CrŒ20H2+ [O2CH2OH2+] -» 02Cr<- + CH2O + H+ (17) 

It has been proposed before^ that one-electron reduction of 002^+ yields Cr02H2+. 

However, no direct evidence for this novel species has been obtained prior to this work. The 

full recovery of the Cr02^''' spectrum upon oxidation of Cr02H?+ with one equivalent of 

Ce(rV) leaves little doubt about the identity of this species.21 The spectral features. Figure 1-4, 

are as expected for an inorganic, weakly absorbing chromium(in) complex, and the molecule 

is probably best described as a hydroperoxochromium(in) species. The only uncertainty 

associated with this species seems to be the level of protonation in the acidity range studied, 

0.10 -1.0 M H+. If one assumes that coordination to Cr3+ affects the acidity of H2O2 to the 

same extent that it does the acidity of H2O (the pKa of Cr(H20)63+ is 4) and taking into 

account that the pKa's of free H2O (14) and H2O2 (11.9) differ by only two units, one might 

reasonably expect that both Cr02H2+ and Cr(H202)^^ coexist in acidic solutions. Such an 

expectation is corroborated by the fact that the acidity constants ofFe(H20)63+, pKa = 3, and 

(H20)5Fe(H202)^+, pKa = 1.2 22 differ by less than two pK units. Therefore the pKg of 

Cr(H202)^^ is probably in the range 1-3. However, for the sake of simplicity, the formula 

Cr02H2+ is used to represent both forms of the hydroperoxo complex. 
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Cr02H2+ is only the second example of an end-bonded hydroperoxometal complex that 

is long-lived in aqueous solution. The chemistry of the other one, ([14]aneN4)Co02H2''',^^'^^ 

has been explored only marginally. 

The effect of alcohols on the vields and lifetime of CxOf-+ 

The increased yields of in the reaction between Cr2+ and excess O2 in the 

presence of even small amounts of an alcohol ([ROH] <0.1 M) demonstrate that at least one 

reaction intermediate reacts with alcohols. Additional CrOz^f wag formed even when the 

alcohol was added within a few seconds after the mixing of Cr^+ with excess O2. 

The reaction of Cr2+ with O2 is known5.7.24-27 to be a multistep process that involves 

several intermediates. Only the first one in the sequence, Cr02^+, has been identified directiy 

in the autoxidation of Cr^+J other proposed intermediates are Cr02Cr4+, CrOCr^, and 

Cr02+. The first one has been prepared independentiy,28 but has not been observed directly in 

the autoxidation process. The species proposed to be the CrOCr4+ ion was in fact 

mischaracterized (see Chapter II). The last intermediate, CrO^+, was proposed^ to be an 

extremely short-lived transient that is rapidly reduced by Cr^+ to dimeric Cr(in). The same 

species is believed to be an intermediate in the reductions of Cr(VI) by a variety of organic 

reductants, including alcohols.30 Neither Cr02^''' nor Cr02Ci^ reacts with alcohols. Also, 

HCr04", which might be present in small concentrations,^ is unreactive on these time scales.30 

The reaction of Cfl* with O2 leads to formation of the surprisingly long-lived 

aquachromium(IV) ion, Cr02+ (ti/2 ~ 45 s at 25 °C, Chapter in).31 The Cr02+ reacts with 

CH3OH and other alcohols in a two-electron process which yields Cfi* as the immediate 

product. In the presence of excess O2, the Cr2+ is trapped and becomes Cr02^+. The effect of 

CH3OH is therefore to convert Cr02+ into Cr02^+, Scheme l-l. A possible source of Cr02+ 

is the reaction of Cr02^"*' with Cr^+, a reaction which has been proposed to be extremely fast.5 
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Scheme I I. Mechanism of Cr02^+ stabilization via CH3OH trapping of Cr02+ 

Cr02^+ + Cr2+ -» nCr02+ + other Cr products 

Cr02+ + CH3OH Cr2+ + CH2O + H2O 

Cr2+ + O2 C1O22+ 

(18) 

(19) 

(1) 

The decomposition of Cr022+ was shown to involve rate-determining homolysis of the 

Cr-0 bond to produce Cr2+ and O2.S The Cr2+ either recombines with O2 or reacts with 

CrOi^^; the latter process contributes to the net loss of CrOi^t If the product of this reaction 

is Cr02+, as proposed above, then CH3OH will convert Cr02+ to Cr2+, which again makes a 

choice between Cr02^* and O2. Since the reaction with O2 regenerates Cr022+, the lifetime of 

Cr022+ increases in the presence of CH3OH and O2. The corollaiy is also observed: in the 

absence of O2» the CH3OH contributes to a decreased lifetime for 0022+ by recycling Cr02+ 

into Cr2+, which destroys additional 0022+. 

At this stage of development^  ̂eq 18 implies only that the reaction of OO22+ with 02+ 

yields some 002+. The stoichiometry and the mechanism of the reaction have not been 

established, 13 although it is almost certain that this is not a simple outer-sphere electron 

transfer. 

The anaerobic chain reaction 

The reaction of CrCH20H2+ with OO22+ in Uie absence of O2 is much faster than the 

first step in the catalytic autoxidation, eq 11. Thus a different catalytic reaction, or a chain 

reaction, sets in under air-free conditions. The scavenging effect of (NH3)sCoF2+, which 

brings the rate constant down to that for reaction 11, strongly implicates 02+ as a crucial 

intermediate. The effect of CH3OH on the overall stoichiometry requires at least one additional 



www.manaraa.com

27 

intermediate, which we believe to be CrO^+. One plausible scheme in the absence of CH3OH, 

Scheme 1-2, consists of reaction 11 to form Cr2+, reduction of Cr02^"*' to CrO^+, eq 18, and 

oxidation of CrCH20H2+, eq 21. 

Scheme 1-2. Mechanism of the airfree chain reaction between Cr02^+ and CrCH20H^+ 

chain initiation Cr02^+ + CrŒ20H2+ -> Cr2+ + CH2O + Cr02H2+ (11) 

chain propagation 002^+ + Cr2+ -» nCr02+ (18) 

Cr02++ CrŒ20H2++ H+-» Cr2+ + Cr3+ + CH2O + H2O (21) 

Although tiiere is very littie information about reaction 21, it is expected to yield Cr2+ 

irrespective of whether the reaction takes place by a one- or two-electron patiiway. 
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SECTION n 

PREPARATION AND REACTIVITY OF THE AQUACHROMIUM(IV) ION. 

OXIDATION OF ALCOHOLS, ALDEHYDES AND CARBOXYLATES BY 

HYDRIDE TRANSFER 
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ABSTRACT 

Four methods have been developed to prepare aquachromium(IV), which we 

believe to be an oxo ion, CrO^+. It readily converts PhgP to PhgPO (k = 2.1 x 10^ L mol'l 

s"^) at 25°C in 85% CH3CN/H2O (0.10 M HCIO4). The reactions used to form CrO^+ are 

those between Cr^+ and (a) O2, (b) anaerobic Cr02^+, (c) anaerobic CrOOCr4+, and (d) 

anaerobic Tl(in). The 00^+ has a half-life of 30 seconds in acidic solution at room 

temperature, and will oxidize alcohols, aldehydes and certain carboxylates as well as 

diethyl ether. The second-order rate constants (L mol'l s'^) in acidic solution (|i = 1.0 M 

HC104/LiC104,25 °C) are: CH3OH, 52; CD3OH, 15; C2H5OH, 88; C2D5OH, 41; 

(CH3)2CH0H, 12.0; (CD3)2CDOH, 4.6 ; Œ2=CHCH20H, 101 ; CH3(CH2)2CH20H, 

44; (C2H5)(CH3)CH0H, 41; (Œ3)3CCH20H, 39; C6H5CH2OH, 56; 

(C6H5)(CH3)CH0H, 30; (C6H5)2CHOH, 10.5; P-CH3OC6H5CH2OH, 71; p-

CH3C6H5Œ2OH, 66; P-CF3C6H5CH2OH, 60; C-C4H7OH, 44; C-C5H9OH, 31; 

HCHO H2O, 92; (Œ3)3CH0, 37 ; HCO2H, 11.6 ; HCO2-, 6.9 x 103; HC2O4-, 2.2 x 

10^; (C2H5)20, 4.5. Activation parameters were also determined for selected reactions. In 

all but two of these reactions (cyclobutanol and pivaldehyde), Cr2+ jg the immediate 

product as shown by trapping with O2. Based on the kinetic and product analysis, tiie 

mechanism of oxidation by CrCP+ is proposed to be hydride transfer. The reactivity order 

for alcohols (1° > CH3 > 2°), the small substituent effect for the benzyl alcohols and the 

similarity of all the rate constants regardless of the organic substrate are inconsistent with 

the formation of carbon-centered radicals. The reaction ofHCrO#' with (CH3)2CH0H is 

also shown to involve Cr02+ and Cfi* as intermediates. The latter reacts with HCr04-

with a rate constant of 2 x 10  ̂L mol"  ̂s'̂  in 2.0 M HCIO4. 
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INTRODUCTION 

The intermediate IV and V oxidadon states of chromium proved elusive to 

coordination chemists for many years. Recentiy, complexes of Cr(V) with Schiff base^ 

and carboxylate ligands^ have been isolated in which the V oxidation state is stable enough 

to permit spectroscopic and even ciystallographic characterization. The IV oxidation state 

is known as a diperoxo species^ and with the tetraphenylpoiphyrin ligand'^. Recentiy, 

electrochemical and kinetic evidence^ for a Cr(IV) intermediate was obtained in the 

reduction of bis(2-ethyl-2-hydroxybutyrato)oxochromate(V). Without such ligand 

stabilization, i.e., as an aqua complex, Cr(IV) has generally been considered unstable and 

highly reactive, and therefore impossible to isolate.® Evidence to the contrary is presented 

in this chapter. 

It has long been recognized that the one- and two-electron oxidations of various ' 

metal ions'' and organic substrates* by H2Cr04 must proceed through hydrated Cr(IV) and 

(V) species. Evidence has been presented^ for the intermediacy of Cr(V) in die oxidation 

of alcohols and carboxylates by H2Cr04, where the esr signal of a tetragonally-distorted d^ 

species can be attributed to Cr(V). This Cr(V) species almost certainly contains 

coordinated alcoholate or carboxylate ligands. Hydrated Cr(IV) has not been observed 

directiy, even though it has been invoked in many mechanismsas a transient which reacts 

rapidly with other species in the reaction mixture. Also, the reaction of Cr(H20)6^+ with 

strong oxidants involves these same intermediates. 

In this work, the preparation of aqueous Cr(IV) in the absence of stabilizing ligands 

is described. This species was discovered during an investigation of tiie catalytic reactions 

of the superoxochromium(in) ion, Cr02^+.^^ (Throughout this work, coordinated water 

molecules are not shown.) Cr(IV) reacts with PhgP with a rate constant of (2.1 ± 0.2) x 

103 M-ls-i in 85% CH3CN/H2O (0.10 M HCIO4) at 25 °C to give PhgPO and Cfi+, which 
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is trapped by O2 to become Cr02^+. On this basis, and by analogy with the known 

CrlV=o unit in porphyrin chemistry,'* the Cr(IV)(aq) is assigned the formula CrO^t This 

Cr(IV) species is the same as the proposed intermediate in the reaction of H2Cr04 with 

alcohols, as demonstrated by 02-trapping. The CrCP+ is stable enough (half-life 30 s in 1 

M HCIO4) to use as a bulk reagent in mechanistic studies. The kinetics of the reactions of 

CrO^+ with various alcohols, aldehydes and carboxylates are described, and a hydride-

transfer mechanism common to all these reactions is proposed. Although much of the 

literature on Cr(rV) reactions is based on the assumption that Cr(IV) is a one-electron 

oxidant,i3.l4 we show that this is rarely the case. A two-electron path is not only 

thermodynamically viable, but unequivocally observed: 

Cr02+ + RH2 Cr2+ + R + H2O (1) 
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EXPERIMENTAL SECTION 

Cr02+ was usually prepared by syringe-injection of an air-fiee solution of Cr^+ 

(from Zn/Hg reduction of Cr(H20)6^+) into an acidic aqueous solution containing O2. At 

very low Cr^+iOi ratios, ca. 0.05:1, the adduct CrOi^"*" is formed quantitatively. The 

Cr02^^ was identified and quantified by its intense and characteristic uv spectrum: e290ntn= 

3100 M'^cm-l, e245nm= 7000 M'^cm'^.^^ At higher Cr2+:02 ratios, for example 1:1, with 

efficient mixing in a stopped-flow jet, the CrO^+ is formed in ca. 30% yield (other products 

are nonoxidizing, low-absorbing Cr(ni) species). At intermediate ratios, a mixture of 

CrO^+ and CrO^* is produced. The superoxo complex CrO^* is stable for at least half 

an hour at room temperature under O2, and on tiiis time scale does not react with any of the 

organic substrates studied here. In experiments where the product of the CrC)2+ reaction is 

Cfi+, it was necessary to work in the intermediate concentration regime (0.15 Cr2+/02). 

Under these conditions, the Cr2+ product is trapped efficientiy by oxygen, thus avoiding 

the autocatalytic consumption of Cr02^+ by Cr2+, eq 1 and 2:^2 

In much of this work, 00^+ was prepared by injection of Ofl* into 02-saturated 

aqueous HCIO4 (0.02 -1.0 M), as described above. In some cases it was prepared by 

mixing of Cr2+ and O2 solutions in the stopped-flow apparatus, with one of the solutions 

containing the desired organic substrate. Cr02+ is also made by three other reactions, eq 2-

Cr022+ + 2Cr2+ + 2H+ -» Cr02++ Cr(OH)2Cr4+ (2) 

17 4, all anaerobic. 

CrOOCr4+ + Cr2+ + H2O -> Cr02+ + Cr(OH)2Cr4+ 

T10H2+ + Cr2+ -4 T1+ + Cr02+ + H+ 

(3) 

(4) 
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Enough experiments were done with these other sources of CrO^+ that we are confident the 

same oxochromium ion results from each, by virtue of identical reaction kinetics. 

The ultraviolet spectrum of Cr02+ was obtained by mixing 0.26 mM O2 and 0.3 

mM Cr2+ in a Durrum stopped-flow apparatus equipped with a rapid-scan lamp. 

Extinction coefficients were obtained by adding ABTS^- (2,2'-azino-bis(3-

ethylbenzthiazoline-6-sulfonate))18 and measuring the amount of the intensely-colored 

radical anion ABTS*- formed (A, 417 nm, e = 3.47 x 10^ M-^cm-1; X 645 nm, e = 1.35 x 

10* M'^cm'l ). 

Reactions of CrO^+ were monitored in three ways. Occasionally, the weak 

absorption of Cr02+ (X 260 nm, e = (5 ± 1) x 10^ M'l cm'^) itself was used. Some 

reactions were conducted by adding ABTS^- simultaneously with the substrate. The 

formation of ABTS'- concurrent with substrate oxidadon provided a convenient kinetic 

probe. Many reactions were conducted in 02-saturated solutions. In these cases, the 

product Cr2+ is rapidly converted to CrOz^*, and the rate of Cr02+ consumption is equal to 

the rate of Cr02^+ production. Rate constants from the tiiree methods agreed. 

In a typical experiment, 0.2 mM Cr2+ was injected into 02-saturated acidic solution 

(pH maintained by Ha04, ionic strength by LiCI04) containing at least a ten-fold excess 

of the appropriate organic substrate. Results were identical, when the organic substrate was 

added after the Cr^+, or when the two solutions were mixed in a Dumim stopped-flow 

spectrophotometer. The absorbance changes due to buildup of Cr02^+ as CrO^+ reacted 

with tiie substrate were monitored either at the 290 or 245 nm maximum of Cr02^"^-

Temperature was controlled at 25.0 ± 0.2°C by means of a thermostated cell-holder 

connected to a circulating water baUi. All data were fit to a pseudo-first-order equation, 

since the rate of Cr02^+ formation from the rapid^^ reaction between and O2 is 
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governed by the rate of reaction 1. Thus d[Cr02^^]/dt = ki[Cr02+][RH2], and with 

[RH2]o » [Cr02+]o, first-order kinetics are obeyed. 

In contrast, the kinetic data in the presence of ABTS^- fit a biexponential rate law, 

since ABTS^- reacts with both Cr02^+ and CrO^+. The Cr02^+ is inevitably formed in 

experiments with all but the highest Cr^+iOi ratios. That is, reactions 5 and 6 occur 

simultaneously, such that the buildup of ABTS"* follows the rate law given in eq 7: 

Cr02+ + ABTS2- + H+ ^ CrOH2+ + ABTS"- (5) 

Cr022+ + ABTS2- + H+ -4 Cr02H2+ + ABTS"- (6) 

d[ABTS--]/dt = k5[ABTS2-] [Cr02+] + ke [ABTS2-][Cr022+] (7) 

Data were analyzed to determine kg and kg, and the kg value agrees with that evaluated 

independentiy by mixing ABTS2- with a pure sample of Cr022+. 

The dissolved O2 concentration was calculated using the known solubility of 

oxygen in water at 25°C under O2 and air atmospheres. 19 Thallium(in) sulfate, CrOg, 

NaHC02, NaHC204, diammonium 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonate), and 

the various alcohols, aldehydes, and ethers were purchased from commercial sources and 

used as received. Solutions of HCHO were obtained by dissolving paraformaldehyde in 

warm 1 M HCIO4, and were standardized by chromotropic acid analysis.20 0000^+ 

was prepared by a literature method2l and was standardized spectrophotometrically 

(£634nm= 404 M'^cm'l). Organic products were determined on an HP 5730A gas 

chromatograph equipped with a VZ-10 column. 

Unless stated otherwise, the kinetic data were determined at 25.0 ®C and 1.0 M 

ionic strength (HCIO4 + LiC104). 
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RESULTS 

Formation of Cr02+ 

The reaction of Cr2+ with O2 produces Cr02^+ quantitatively only in the presence 

of a large (^0-foId) excess of 0%. When O2 is not in large excess, another short-lived 

oxidizing Cr species is formed which decays to nonoxidizing Cr products. This short

lived species is identified (see Discussion) as oxochromium(IV) or CiO^+. The reactions 

cited in eq 2 - 4 also yield Cr02+. 

That the same species was produced in all three reactions was shown by conducting 

any one of the several reactions described subsequently with Cr02+ from an alternate 

source. This species is a fairly strong oxidant, as shown in subsequent work. 

Spectrum of Cr02+ 

Stopped-flow mixing of 0.3 mM Cr^+^^q) and 0.26 mM 0% produces -0.045 mM 

CrO^t The difference spectrum, shown in Figure II-1 relative to the absorbance after 

Cr02+ has decomposed, has a peak at 260 nm (e = (5 ± 1) x lO^ L mol-^ cm 1) and a well-

defined shoulder at 300 nm. 

Reaction of CH^OH with CrQ2+ 

The immediate addition of millimolar quantities of CH3OH to 02-saturated 

solutions containing 0.1 mM of CrO^+ causes the spectrum of Cr02^+ to intensify, Figure 

n-2. The rate of formation of Cr02^+ follows first-order kinetics, and the pseudo-first-

order rate constants vary linearly with the concentration of CH3OH at a given ionic 

strength, as shown in Figure n-3. The plot has a nonzero intercept, 0.033 s'^ at |i= 1.0 M, 
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Figure H I. Difference spectra of CKfi* formed by stopped-flow mixing of 0.3 mM 

Cr2+ and o.26 mM O2 in 1.0 M HCIO4. Time interval between spectra is 

20 s. Spectra were obtained by difference from the spectrum at 60 s. The 

yield of Cr02+ is 15 % based on total Cr. Optical pathlengtii 2cm. 
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Figure 11-2. Formation of CiOp-* (%max 290,245 nm) from the reaction between 1 

mM CH3OH, 1.26 mM O2 and 0.1 mM Cr02+, in 0.10 M HCIO4. Spectra 

were recorded at 10 s intervals in a 1 cm cell. 
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Figure 11-3. Dependence of the pseudo-first-order rate constants for the oxidation of 

CH3OH by Cr02+ on the concentration of CH3OH. Conditions: 1,26 mM 

O2,0.10 M HCIO4,0.90 M LiC104,25.0 °C. 
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which appears repeatedly throughout this work and is not a characteristic of CH3OH in 

particular. The slope of the plot gives kg = 52.2 ± 1.4 L mol"^ s"^ as the rate constant for 

the reaction between CrO^+ and CH3OH, eq 8, followed by eq 9: 

Cr02+ + CH3OH -» Cfi+ + HCHO + H2O (8) 

Cr2+ + 02 -> C1O22+ (9) 

The rate constant decreases to 15.1 ± 1.7 L mol'^ s"l upon deuteration of the carbon-

hydrogen bonds, eq 10, for an isotope effect kn/kD = 3.46. 

Cr02+ + CD3OH -» Cr2+ + DCDO + H2O (10) 

The rate constant for oxidation of CH3OH is independent of [O2], provided O2 is in 

excess, and of [H+] in the range 0.01 -1.0 M, but decreases significantly with decreasing 

ionic strength. In H2O at ji = 0.10 M, the rate constant is kg = 22.7 ± 0.6 L mol"^ s'^. 

Rate constants were also determined for oxidation of CH3OD in D2O and CH3OH in 6.3 M 

CH3CN at 0.10 M ionic strength, with values of 23.8 ± 1.6 and 22.6 ± 1.6 L mol"^ s"l 

respectively. 

HCHO was identified as the organic product by chromotropic acid analysis. 

Quantitation was difficult under kinetic conditions in the presence of O2, because the 

inorganic product Cr022+ eventually oxidizes CH3OH during its decomposition (by 

homolysis^S to form Cr2+ followed by reactions 2 and 8, which form a catalytic cycle). 

Cr02+ is the only intermediate in the decomposition reaction which oxidizes CH3OH on 

these time scales. The yield of HCHO was determined by analyzing an aged solution of 

pure 0022+ to which CH3OH was added. The yield of HCHO was found to be 430 % 
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based on the initial concentration of Cr02^+, implying induced oxidation of CH3OH by O2. 

eq 11. 

CrOg"^ 
O2 + 2 CH3OH 2 HCHO + 2H2O (11) 

Stopped-flow mixing of 0.3 mM Cr2+ with 1.2 mM O2 in the presence of 0.06 -

0.6 M CH3OH gives rise to first-order absorbance increases at 290 nm, identical to the 

traces obtained by syringe transfer of reagents. When tiie O2 concentration was lowered to 

0.26 mM, a biphasic trace appeared, Figure 11-4. The formation of Cr02^+ from the 

reaction of CrO^+ with CH3OH begins as before, but O2 is quickly consumed. The Cr^+ 

product then reacts with the Cr02^+, causing the absorbance to decrease autocatalytically. 

The reaction of CrO^+ with CH3OH can also be studied in the visible region at 417 

or 610 nm in the presence of the kinetic probe ABTS^- and excess O2. Both 00^+ and 

Cr02^+ are formed in the stopped-flow mixing of Cr̂  ̂and O2, with or without CH3OH, 

and both species oxidize ABTS^- at an appreciable rate, as in eq 5 and 6. The biphasic 

formation of ABTS"* in the absence of CH3OH gave kg = (7.9 ± 0.6) x lO^L mol"^ s'^ 

and kg = (1.36 ± 0.11) X 10^ L mol"^ s"^ at 25°C in 0.10 M H+. The product of reaction 6, 

the hydroperoxo species Cr02H^^, has been prepared independentiy (see Chapter I)^^ and 

does not oxidize ABTS^' under these conditions. 

When the reaction was conducted in the presence of CH3OH, the rate constant for 

the faster phase of ABTS"- formation increased, while the magnitude of the associated 

absorbance change decreased. The rate constant for tiie reaction of Cr02+ with CH3OH 

was then obtained from the faster phase by use of the expression -d[Cr02+]/dt = (kg 

[ABTS2-] + kg [CH3OH]) [CrC)2+], yielding kg = 22.4 ± 2.9 L mol'^ s'^ at 0.1 M H+, 
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Figure 11-4. Kinetic trace showing the reaction of CrO^+ with 0.19 M CH3OH in the 

presence of an insufficient excess of O2. The mixture of Cr02+ and 002^+ 

was generated by stopped-flow mixing of 0.08 mM Cr2+ with 0.13 mM 

02- The Cr2+ product from the reaction of Cr02+ with Œ3OH consumes 

Cr02^^ autocatalyticaHy. [HQO4] = 0.10 M; T = 25 ®C; optical pathlength 

— 2 cm. 
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Figure H-S. Dependence of the corrected rate constant, kcotr = kobs - ksCABTS^-] on 

the concentration of CH3OH. ABTS^- is a kinetic probe for the reaction 

between Cr02+ and Œ3OH. [HCIO4] = 0.10 M, 25 °C. Slope = 28 L 

mol-1 s'l. 
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Figure 11-5. This compares well with the value 22.7 L mol*^ s"^ determined directly from 

the rate of Cr02^+ formation. 

Reactions of other alcohols 

For every alcohol shown in Table II-l except cyclobutanol, the reaction produced 

CxO:p-* when conducted in the presence of O2. The pseudo-first-order rate constants were 

derived in the same way as for CH3OH by following the formation of Cr02^+ in the 

presence of at least a ten-fold excess of the alcohol. The first-order rate constants were 

plotted against alcohol concentration. In each case, a significant nonzero intercept of 0.01 

- 0.03 s"^ appears in these plots. Significant isotope effects were found for Œ3CH2OH 

(kn/kD = 2.13) and (Œ3)2CHOH (kn/ko = 2.61) upon deuterium substitution in all the 

carbon-hydrogen bonds. The ionic strength dependence of the first-order rate constants is 

shown for (CH3)2CHOH in Figure 11-6. Activation parameters were determined for the 

reactions of CH3OH, CD3OH and (CH3)2CHOH from the temperature dependence of the 

rate constants (listed in Table n-2 and shown for (CH3)2CHOH in Figure 11-7) and are 

listed in Table 11-3. 

The formation of Cr02^'*' is taken as evidence that G2+ ig the immediate product of 

the reaction of Cr02+ with these alcohols. In the oxidation of neopentyl alcohol, the 

product solution was analyzed for HCHO, a product of the cleavage of the 

hydroxyneopentyl radical, eq 12. No HCHO was found. 

(Œ3)3CCH0H -> (CH3)30 + HCHO (12) 

The yield of the inorganic product Cr02^+ does not depend on tiie ionic strength in the 

range 0.10 M -1.0 M. 
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Table 11-1. Bimolecular rate constants for the oxidation of alcohols by CrO^+ ® 

Alcohol k / L mol'l s 1 Alcohol k / L mol 1 s 

CH3OH 52.2 ±1.4 C6H5CH2OH 56.0 ±3.6 

CD3OH 15.1 ± 1.7 C6H5CH(0H)CH3 29.6 ±5.6 

CH3CH2OH 88.4 ±4.4 (C6H5)2CH0H 10.5 ± 0.8 

CD3CD2OH 41.5 ±4.2 (4-CH30)C6H5Œ2ÔH 71.2 ±3.6 

(CH3)2CH0H 12.0 ±0.4 (4-CH3)C6H5CH20H 65.6 ±3.8 

(CD3)2CD0H 4.6 ±0.2 (4-CF3)C6H5CH20H 60.1 ±1.7 

CH2=CHCH20H 100.7 ± 6.6 cyclobutanol 44.1 ± 1.2 

CH3(Œ2)2CH20H 43.8 ± 3.9 cyclopentanol 30.6 ±0.6 

CH3CH2CH(0H)CH3 41.4 ±0.7 (CH3)3CCH20H 39.0 ±3.3 

® All rate constants were measured at 25 °C in (^-saturated aqueous 0.10 M 

HCIO4/O.9O M LiC104 or 1.0 M HCIO4. In each case, CrO^+ was generated by the 

reaction of Cr2+ with O2, and for all but cyclobutanol, the reaction of CrO^+ with ROH 

was monitored using the increase in absorbance at 290 nm due to Cr02^+ formation. For 

cyclobutanol, the loss of absorbance at 270 nm due to Cr02+ was monitored. 
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Figure 11-6. Ionic strength dependence of the observed rate constant for the oxidation 

of 9 mM (Œ3)2CH0H by CrO^+ at 25 °C. Since there is no dependence 

of the rate constant on [H+], the ionic strength was varied either by varying 

[HCI04]or[LiC104]. 
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Figure 11-7. Dependence of the bimolecular rate constant for the oxidation of 

(CH3)2CH0H by Cr02+ on temperature. All measurements were made in a 

1 cm spectrophotometer cell containing 0.10 M HCIO4/O.9O M LiC104 

saturated with O2. The inset shows a plot of ln(k/T) versus temperature, 

with slope AHt /R = 4007 K"1 and intercept (AS^/R)+ln(R/Nh) = 10.277. 
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Table II-2. Rate constants for the oxidation of selected substrates by CrO^+ at various 

temperatures 

Substrate 

CH3OH 

CD3OH 

HCHO 

cyclobutanol 

T = 5.3°C 

18.7 

3.7 

29.0 

Rate Constant /L mol"^ s"^ 

T=14.7°C T = 25.0°C 

31.6 

6.5 

44.0 

21.8 

53.2 

15.9 

96.7 

44.1 

T = 35.2°r! 

19.0 

184 

88.6 

Reaction of cvclobutanol 

This reaction is unlike the reactions with all the other alcohols studied here in that it 

does not give rise to Cr02^+ in the presence of excess Og. Also, the reaction is not 

autocatalytic in the presence of a limiting amount of O2. The reaction is characterized by an 

absorbance decrease in the ultraviolet region, corresponding to the loss of CrO^+. First-

order kinetic traces were obtained at 270 nm where CrC)2+ absorbs significantly. The 

pseudo-first-order rate constants are linearly dependent on the concentration of 

cyclobutanol, giving a bimolecular rate constant of 44.1 ± 1.2 L mol"^ s'l in 1.0 M H+ at 

25°C. The rate constant is independent of [H+] and ionic strength in the range 0.10 -1.0 

M. Activation parameters for the oxidation of cyclobutanol by Cr02+ are given in Table 11-

3. 
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Table II-3. Activation parameters for the oxidation of organic substrates by hydride 

transfer 

Activation Parameters 
Oxidant Substrate AHt/kJmol-l ASt/J K-1 mol-l 

Cr02+ CH3OH 

CD3OH 

(CH3)2CH0H 

cyclobutanol 

34±6 

38±7 

33±3 

46±1 

-99 ±20 

-95 ±21 

-112±14 

-61 ±2 

this work 

this work 

this work 

this work 

Ru(bpy)2py02+ Œ3OH 58 ±8 

CD3OH 71 ±8 

CH3CH2OH 38 ±3 

C6H5CH2OH 24 ±1 

C6H5CD2OH 23±3 

-109 ±25 

-88±20 

-167 ±8 

-159 ±4 

-192 ±8 

33a 

33a 

33a 

33a 

33a 

Ru(tcpy)(bpy)02+ (CH3)2CH0H 38 ±4 -142 ±17 33b 

Ph3C+ Œ3CH2OH 70 

(Œ3)2CH0H 60 

-92 

-109 

34 

34 
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Reactions of HCHO and pivaldehvde 

The reaction of 0.1 mM CrO^f with millimolar aqueous HCHO in the presence of 

02 also yields Cr02^+. The pseudo-first-order rate constants are linearly dependent on the 

concentration of HCHO, with an intercept of 0.029 s'^ and a slope of 91.7 ± 2.9 L mol"^ s" 

1 in 0.10 M H+ (p. = 1.0 M). The bimoîecular rate constant is acid-independent in the 

range 0.10 -1.0 M. Activation parameters are AH* = 46.8 ± 1.7 kJ/mol and AS* = -50.0 

±1.9 J/K-mol. The formation of Cr02^'*" from CrO^+ and 0.6 mM HCHO is not observed 

in the presence of 1 -10 mM Mn2+, a scavenger for CrO^+.lO Under these conditions an 

absorbance decrease rather than an increase was recorded at 290 nm. The reaction mixture 

containing Mn2+ developed an intense yellow color and an insoluble precipitate of Mn02 

regardless of whether HCHO was present or not 

The reaction of CrO^+ with pivaldehyde, (CH3)3CCHO, does not yield Cr02^+. 

The reaction was studied by monitoring the loss of 00^+ at 260 nm. The second-order 

rate constant is 37.1 ± 6.4 L mol ^ s"^ at 25°C and is acid-independent. CH4, isobutane 

and isobutene were identified as the major organic products by gas-phase chromatography. 

The other expected organic product, acetone, was not determined. 

Reactions of HCO2H and H2C20ji 

These reactions give Cr02^+ as the inorganic product in the presence of O2, 

regardless of the order of mixing of reagents. At a 1:1 Cr2+;02 ratio, the formation of 

Cr02^+ is followed by an autocatalytic decrease in absorbance, similar to tiiat reported 

above for the alcohol reactions. When O2 is in large excess over Cr2+, the increase in 

absorbance at 290 nm is pseudo-first-order for all concentrations of excess HCO2H and for 

[H2C2O4] < 0.025 M. At higher H2C2O4 concentrations, mixed-first- and second-order 

traces were obtained. Therefore, kinetic analyses were performed only at lower H2C2O4 
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concentrations. The bimolecular rate constants for both reactions are inversely acid-

dependent The rate law was resolved into acid-independent and acid-dependent terms 

using the known acid-base equilibria between the carboxylic acids H2A and their conjugate 

bases HA": 

where Ka = [HA-][H+]/[H2A] and kj = 0.022 s*^ is the intercept of the plot of kobs versus 

total carboxylic acid concentration. For HCO2H, pKa = 3.53^2 leads to simplification of 

the rate law, since [H+]»Ka. Thus, 

A plot of (kobs - k(l)/[A]total versus [H+]"^ is linear with slope k"Ka= 2.03 ± 0.10 

s"^ giving k"= (6.68 ± 0.33) x 10^ M'^s"^ as the bimolecular rate constant for the reaction 

of HCO2" with Cr02+. The intercept yields k' = 11.6 ± 1.1 L mol'^ s'^. 

For H2C2O4, pKai= 1.0422, so the assumption made in eq 14 is not valid. 

Therefore, the acid-dependent rate constants kobs were fitted to the complete rate law of eq 

13 using a non-linear least-squares fitting routine and allowing k', k", and Ka to vary. The 

fitting routine reproduced the literature value for Ka = 0.093 and gave a negligible value for 

k'. With the k' term assumed to be zero, the rate law simplifies to eq 15: 

kobs = kfHzA] + k'(HA-] + ki = k"Ka + kd 

(13) 

(14) 

(15) 
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A least-squares fit to equation 15 gave k" = (2.23 ± 0.25) x 10^ L mol'^ s'^ as the 

bimolecular rate constant for the oxidation of HC2O4" by CrO^+. 

Rgagtipn of fCHaCHzbO 
Cr02^+ is formed from CrO^+ by its reaction with (Œ3CH2)20 in the presence of 

O2. The pseudo-first-order rate constants vary linearly with the concentration of 

(CH3CH2)20, which is the excess reagent. The bimolecular rate constant is 4.45 ± 0.28 L 

mol"l s"^ in 0.10 M H+ at 25°C. Tetrahydrofuran does not react with CrO^+ under these 

conditions. 

Formation of air-free Cr02+ from Cr02^+ or CrO^Ci^ 

Stopped-flow mixing of 0.050 mM argon-saturated Ci02^* with a solution 

containing 0.025 mM Cr2+ and 0.3 - 2 mM ABTS^- in 0.10 M H+ causes a biphasic 

formation of ABTS - at 417 nm. The rate constant for the fast phase is (8.4 ± 1.2) x 10* 

M-^s'l, in agreement with the rate constant for reaction 5 reported above in the presence of 

O2,7.9 X 10^ L mol'l s"^ When CH3OH was also present, the rate constant of the fast 

phase was higher due to reaction 8, however, the absorbance change was smaller because 

reaction 8 does not contribute to the absorbance increase, and because some of the Cr2+ 

product reduces ABTS"-. The slow phase is the reaction of ABTS^- with residual Cr02^+, 

and its rate is not affected by the addition of CH3OH. 

Mixing of 0.0275 mM air-free CiOOOM and 0.275 - 2.06 mM ABTS2- in 0.10 M 

H+ was done at 25 °C in the stopped-flow apparatus. The rate of formation of ABTS - was 

recorded at 417 nm and fitted to a first-order kinetic equation. The pseudo-first-order rate 

constants were plotted against the [ABTS^-], giving a straight line with slope k = 802 ± 47 

L mol'^ s'^ and negligible intercept. When the ABTS^- solution contained Cfi+, a biphasic 



www.manaraa.com

58 

absorbance increase was observed. The rate constant for the slower phase corresponds to 

the reaction of the remaining CrOOCr^ with ABTS^-, while the rate constant measured for 

the faster phase, 7.1 x 10^ corresponds to the reaction between ABTS^- and CrO^+ 

formed in mixing time. The total absorbance change in the presence of Cr^+ is only 35% 

of the absorbance change in the absence of OP-*, due to consumption of some CrO^+ by 

Cr2+ duiing mixing time, eq 16. 

Cr02+ + Cr2+ + H2O -> Cr(OH)2Cr4+ (16) 

Formation of CtCP-+ from Cr2+ and T10H2+ 

A solution of 0.22 mM T10H2+ in 0.10 M H+ was saturated with argon, then 0.22 

mM 0*2+ was injected. Then an equal volume of 02-saturated 0.10 M HCIO4 containing 

0.37 - 2.34 mM CH3OH was quickly mixed with the Cr02+-containing solution. The 

increase in absorbance at A290 nm yielded kg = 29.3 ± 0.8 L mol'^ s"l, in agreement with 

the values determined by other CrC)2+-.generating methods at 0.10 M ionic strength. At the 

end of the reaction, die uv spectrum shows clearly the 290 nm peak of produced 

in ca. 15% yield based on initial [Cr^+j. The low yield is again attributed to the loss of 

Cr02+ in reaction 16, which competes effectively with reaction 4 (k^ = 2 x 10^ L mol"^ s" 

^).23 A blank experiment, in which all components except Œ3OH were mixed as 

described above, showed no formation of002 '̂''. T10H2+ does not oxidize CH3OH 

under these conditions. 

Intermediacv of Cr02+ in the reaction of HCrO^- with 

An 02-saturated solution containing 0.069 mM HCr04" in 2.0 M HCIO4 was 

allowed to react with 0.21 M (CH3)2CHOH. The peak in the visible spectrum at 345 nm 
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due to HCr04" decreased in intensity over a period of five minutes, while new peaks at 

290 and 245 nm grew in, Figure 11-8. The final spectrum was that of CrOi^"*". The 

percent yield of002^"^ depends on the initial concentration of HCr04', as shown in Table 

n-4, and approaches 100% as the concentration of HCr04" is lowered. 

Table n-4. Yield of Cr02^+ from the oxidation of 2-propanol by HCr04" ^ 

[HCr04-]/mM Yield of CrOz^+ZmMb % Yield of Cr02^+ 

0.364 0.099 (0.091) 28 

0.069 0.042 (0.042) 64 

0.042 0.032 (0.030) 76 

0.016 0.013 (0.014) 81 

^ Concentrations ofHCr04" and Cr02^+ were determined spectrophotometrically. 

Solutions contained 2 M HCIO4,1.26 mM O2 and 0.23 M 2-propanol at 25 °C. 

^ Values in parentheses are predicted yields from numerical integration using the 

program KINSIM. Rate constants used in the simulation were: kgg = 2 x 10^ L mol"^ s'^; 

kg = 1.6 X 10® L mol'l s*^; k.9 = 2.5 x 10-^ L mol"^ s"l; ki? = 8 x 10® L mol'^ s"^ 
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Figure 11-8. Formation of Cr02^+ (^max 290, 245 nm) during the oxidation of 0.21 

M (Œ3)2CH0H by 0.069 mM HCrO^- (Xmax 345,255 nm). The solution 

contained 2.0 M HCIO4 and 1.26 mM O2. Spectra were recorded at 4 min 

intervals in a 1 cm cell. 
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DISCUSSION 

Reaction of Cr2+ with O2 

This is a complex, multistep reaction. The first step was identified by pulse 

radiolysis^® as formation of a 1:1 adduct between O2 and Cr2+. The adduct, Cr02^^, was 

described as a supeioxochiomium(III) because of its electronic spectrum, its kinetic 

stability and its thermodynamic stability constant^^ Subsequent steps in the reduction of 

O2 by Cr2+ are not well-established, because they are extremely rapid. For example, the 

reaction of Cr02^+ with Cr^+ is too rapid for conventional stopped-flow mixing, although 

an estimate of the rate constant (1 x 10^ L mol'^ s'l) was obtained by competition with 

Co(NH3)5F2+ (see Chapter I). The ultimate product of the Cr2++ O2 reaction is known to 

be Cr(OH)2Ci4+,24 formed when Cr2+ enters the coordination sphere of Cr(rV) and is 

then oxidized. After electron transfer, both metal centers become Cr(in), in which the 

coordination spheres are frozen. Therefore the bis-|i-hydroxy dimer is produced, rather 

than Cr(H20)63+. One proposal̂  ̂for the complete mechanism is shown in Scheme II-l, 

although as a result of this work, certain features of it must now be revised. 

Scheme II-l. Mechanism of oxidation of Cr2+ by O2 

0-2+ + 02 Cr022+ (9) 

Cr022+ + Cr2+ -> CrOOCr4+ (17) 

CrOOCr4+ + Cr2+ +H2O -> Cr(0H)2Ci^+ + Cr02+ (3) 

Cr02++Cr2+ +H2O -> Cr(0H)2Ci^+ (16) 

Both CrOOCr^ and Cr02+ are proposed intermediates in the oxidation of Cr2+ by 

O2, and both are now known in other reactions as well. Since kn is very large, reaction 



www.manaraa.com

62 

17 competes with 9 when the concentrations of Cr02^+ and O2 are comparable. However, 

no real evidence has ever been found in this or in previous work for the intermediacy of 

CrOOCr^+. Therefore, (a) CrOOCr^ is not stable enough to be observed or isolated, or 

(b) CrOOCi^ reacts with Cr2+ much more rapidly than 002^"^ does, or (c) CrOOCr^ is 

not formed. The first option is ruled out by the independent preparation^! of CrOOCr^ by 

the reaction of CrOs and H2O2, which demonstrated that the CrOOCr^+ is stable for several 

minutes at room temperature. It also has a characteristic and fairly intense uv-visible 

spectrum. The second option seems unlikely because the Cr^+ + Cr02^+ reaction is 

already very rapid, and the reduction of CrOOCi^ by Cr2+ could not be significantly 

faster. In fact, it may be much slower if the sluggishness of the reaction between Cr^+ and 

H2O2 is any guide.25 The last option seems the most likely then. 

The formation of the other intermediate, Cr02+, may be direct, as in 

The observation that the Cr02+ generated independentiy by the reaction of G2+ y^ith 

Cr02^+ in the absence of oxygen reacts with ABTS^- with essentially the same rate 

constant as the intermediate in the reaction of Cr2+ witii O2 supports the contention that the 

same reaction in both systems gives rise to Cr02+. The Cr02+ so formed oxidizes 

alcohols, aldehydes and some carboxylates, as shown in this work. Aged solutions of 

Cr022+ + Cr2+ 2 Cr02+ (18) 

or indirect, via some otiier intermediate, for example CrVo3+^ 

Cr022+ + Cr2+ + H+ -» Cr03+ + CrOH2+ 

Cr03+ + Cr2+ -> Cr02+ + G3+ 

(19) 

(20) 
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initially pure Cr02^+ which contain CH3OH were also found to contain HCHO, even 

though Cr02^+ does not react with CH3OH directly. This observation is easily accounted 

for by reactions 18 or 19 - 20, since homolysis of Cr02^+ generates the Cr^+ needed to 

produce CrO^+. 

The assertion that the oxidant in these reactions contains Crin the unusual +4 

oxidation state, and that this species undergoes two-electron reduction to Cr2+, results from 

the following reasoning. Consider the possible oxidizing Cr species which could be 

present in the reaction mixture: 

(a) Cr^l would be present as HCr04" under these concentration and pH conditions. It can 

be detected spectrophotometrically by its absorption maximum at X 345 nm (e = 1.4 x lO^ 

M-l cm'^), and it was not observed. Although HCr04* is known to oxidize alcohols, the 

reaction is very slow at pH 1. The intermediate studied here is certainly a more facile 

oxidant than HCr04". 

(b) Aqueous Cr^ is believed to oxidize alcohols by a two electron path and/or 

disproportionate.^ If it reacts directly with the alcohol, the products must be Cr(in) and a 

ketone/aldehyde. No combination of these prodiucts can possibly give rise to Cr02^+. If 

Cr^ disproportionates, one product must be HCr04", which was not observed. 

(c) Cr^V is believed to be a strong oxidant that reacts with 4 variety of alcohols and other 

organic substrates. These reactions have traditionally been written as one-electron 

hydrogen-atom abstractions^ because of the kinetic isotope effects and the stability of the 

Cr(ni) product However, if Cr3+ and a carbon-centered radical are the immediate 

products of the reaction, then Cr3+ must be reduced to Cr2+ by the radical in order to form 

the ultimate product, Cr02^+. While it is themodynamically possible for a hydroxyalkyl 

radical to reduce Cr(H20)63+, 
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Cr(H20)63+ + e- -4 Cr2+(aq) E° = -0.416 V 

CH2O + H+ + e- -» •CH2OH E° = -0.83V27 

(21) 

(22) 

this reaction has been shown not to occur^ because of the reluctance of Cr(H20)63+ to 

undergo outer-sphere electron transfer and the substitutional inertness of Cr(H20)63+, 

which prohibits an inner-sphere path. The conclusion is that the only possible way to 

obtain Cfi*, and consequently Cr02^+, is by a two-electron reduction of a Cr(IV) species. 

Mechanism of reaction of Cr02+ with alcohols 

The rate constants for the reaction of 00^+ with various alcohols are remarkable in 

their uniformity. The reactivity of alcohols towards one-electron oxidants such as Ce(IV) 

varies widely according to the ease of formation of the corresponding hydroxyalkyl 

radicals: the range of second-order rate constants spans several orders of magnitude.29 

For the reactions studied here, not only is the range of rate constants relatively small, but 

the reactivity order is unconventional. Œ3OH is invariably more difficult to oxidize than 

(CH3)2CH0H by a one-electron (hydrogen-atom-abstraction) path: DH°298 (R-H) = 95.9 ± 

1.5 kcal/mol for CH3OH, 90.7 ±1.1 kcal/mol for (CH3)2CHOH.30 However, the 

thermodynamic properties of the two-electron oxidations are very similar: AH°f(ketone) -

AH°f(alcohol) = 17.0 kcal/mol for CH3OH and 16.75 kcal/mol for (CH3)2CHOH.3l Also, 

the formation of the diphenylhydroxymethyl radical is thermodynamically more favorable 

than the formation of the phenylhydroxymethyl radical because of the additional benzylic 

stabilization, yet benzyl alcohol reacts with Cr02+ faster than does diphenylmethanol. The 

lack of a significant para substituent effect in the oxidation of substituted benzyl alcohols 

also implies that benzyl radicals are not formed in the oxidation process. Hammett p values 

for processes involving these radicals are generally large and negative, for example -2.0 
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with Ce(IV) as the oxidant Therefore the oxidation of these alcohols by CrO^+ does not 

proceed by alkyl radical formation. 

Instead, the reactions with alcohols may take place by a concerted, two-electron 

hydride transfer mechanism: 

Cr02+ +R2CHOH [CrO H CR20H]2+ -» CrOH+ +R2CO + H+ (23) 

Although this mechanism has not received much attention in the literature, it would seem to 

be thermodynamically preferable to the previously-proposed hydrogen-atom transfer 

reaction, eq 24. 

Cr02+ + CH3OH -> CrOH2+ + -CHaOH (24) 

The additional energy required to form CrOH+ rather than CrOH2+ jg more than 

compensated by the formation of the stable aldehyde (or ketone) instead of the highly-

energetic hydroxyalkyl radical. The standard potential for the Cr(IV)/Cr(III) couple is 

unknown, although estimates as high as 2.0 V have been made.32 However, the difference 

of free energies AG®23 - AG°24 does not depend on this potential. Taking into account the 

protonation states of the chromium products, CrOH+ and CrOH2+, the free energy 

difference is estimated as -28 kJ/mol. Therefore the hydride transfer path is more 

favorable than the hydrogen-atom transfer path by 28 kJ/mol. This difference is not so 

large, however, as to preclude the hydrogen-atom transfer path when an especially stable 

alkyl radical is formed. Other possible mechanisms are proton-coupled electron transfer via 

the hydroxyl group, ruled out on the basis of the absence of a solvent isotope effect, and 
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outer-sphere electron transfer which is unlikely because of the high energies of the 

protonation states of both products (CrO+ and ROH ) which would result. 

The moderate primary isotope effects (CH3OH/CD3OH, 3.46; C2H5OH/C2D5OH, 

2.13; C3H7OH/C3D7OH, 2.61) support the direct involvement of the carbon-hydrogen 

bond in the rate-determining step. The effects are not as large as for the Ru(bpy)(py)0^+ 

oxidation of alcohols,^3 which range from kn/ko = 9 for Œ3OIVCD3OH to 50 for 

C6H5CH2OH/C6H5CD2OH and for oxidation by RUO4 (kn/ko = 4.6 ± 0.2 with 2-

propanol-2-D)^ which are all claimed to proceed by hydride mechanisms. Isotope effects 

are smaller for the known hydride transfers between PhsC" and (CH3)2CHOH 

(kH/kD=1.84) or HC02" (kH/kD=2.5).3^ Quantum mechanical tunneling has been invoked 

to explain the largest primary isotope effects. However, even the magnitude of the more 

normal isotope effects depends strongly on the geometry of the transition state, being 

greatest when the C-H-O system is linear. Since the RUN5O2+ complexes are 

substitutionally inert, and there is little likelihood of coordination-sphere expansion, the 

transition-state for hydride abstraction is probably linear. However, MO analysis^^ has 

shown that the activation energy for hydride transfer from methanol to the 0x0 ligand of 

RUN5C)2+ would be substantially lowered by prior coordination of the substrate to the metal 

via the hydroxylic oxygen. Such an intermediate in the Cr02+ reaction with CH3OH 

would have the following structure: 
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Formation of a side-on hydrogen bond rather than a linear hydrogen bond minimizes the 

repulsion between the C-H bond and the oxo lone pair. The cyclic intermediate would 

certainly exhibit smaller isotope effects than would a linear transition state. Since Cr(IV) is 

substitutionally labile, it is plausible that alcohols, aldehydes and carboxylic acids 

coordinate to CrO^+ before being oxidized. Analogous esters have been identified in the 

reactions between HCr04" and alcohols in nonaqueous solvents.^ Prior coordination may 

explain why alcohols that are sterically hindered react more slowly (e.g. (CH3)2CHOH vs 

CH3CH2OH, and (C6H5)2CH0H VS CgHgCHzOH). 

The intercepts in all the plots of kbbs versus [ROH] are small, reproducible and do 

not depend in any apparent way on the nature of the alcohol. This feature, a CrCP+-

consuming process with a first-order rate constant of ca. 0.030 s"^ in 1.0 M HCIO4 and 

0.015 s"l in 0.10 M HCIO4, represents the spontaneous decomposition of Cr02+. If 

alcohol addition to the CrO^+'Containing solution was delayed by a few minutes, no 

Cr02^'*' was formed. Both observations are easily explained if Cr02+ decomposes on this 

time scale. The products and mechanism of this side-reaction have not yet been explored. 

Activation parameters 

Values are shown in Table 11-3 for the oxidations of CH3OH, CD3OH, 

(CH3)2CH0H and cyclobutanol by Cr02+. Parameters for other reactions known to be 

hydride transfers are also shown in Table 11-3 for comparison. Hydride transfers are 

generally characterized by positive values of AHt and large negative values of AS*. The 

latter have been attributed to the strict orientational requirements for hydride transfer. In the 

Cr02+ system, collinearity is not required, but formation of a complex between CrO^+ and 

ROH and achievement of the cyclic transition state would certainly contribute to a large 

negative value of AS*. 
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Mgghanism of reagtiQn of HCrO^" with alçohQls and Cr^+ 

The currently accepted mechanism^ for the oxidation of alcohols by HCr04* 

involves Cr(IV), but not Cr2+, as in Scheme 11-2. 

Scheme 11-2. Literature mechanism for oxidation of alcohols by acid chromate 

HCr04- + R2CHOH -4. QIV + R2CO + 2H+ (25) 

CrIV + R2CHOH -> Cr3+ + R2COH + H+ (26) 

HCr04- + R2COH -> CrV + R2CO + H+ (27) 

2CrV HCr04- + Cr^V (28) 

However, CrOz^"^ formation during the oxidation of (CH3)2CH0H by HCr04-requires 

the intermediacy of Cr^+. The variation in the yield of Cr02^^ can reasonably be ascribed 

to a competition between HCr04" and O2 for as in eq 29 and 9. 

Cr2+ + HCr04- Cr3+ + CrV (29) 

The rate constant k29 is too large to measure using conventional stopped-flow techniques.^ 

Using the known value of kp = 1.6 x lO® L mol'^ the rate constant k29 was derived 

from the yields of CrOi^'*' in Table 11-4 by eq 31:37 

k,, _ [O2] In IHC1O4],, / [CrOî U 
1=9 [CrO^j. 

(30) 
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The derived value for k29 is (2.0 ± 0.6) x 10^ L mol'^s'^ in 2.0 M HCIO4. The yields of 

Cr02^^ are well-predicted by kinetic simulation using this value for kgg (see Table n-4). 

Because the yield of Ci02^^ approaches 100% as the concentration of HCr04" decreases, 

oxidation of CrO^+ by HCr04", can be ruled out This reaction has been proposed in the 

literature^® even though it is thermodynamically uphill. The possible 

disproportionationlO,38 of Cr02+ also joes not seem important in the presence of a large 

excess of alcohol. 

The two-electron reaction of 00^+ with aliphatic alcohols is incoiporated into 

Scheme n-3, which we believe should supersede the model in Scheme 11-2. 

Scheme 11-3. Revised mechanism for oxidation of alcohols by acid chromate 

HCr04- + R2CHOH+ 3H+ Cr02+ + RgCO + 3H2O (25) 

The precise formula of the Ct^ intermediate is unknown. Scheme 11-3 does not contradict 

previous observations (no polymerization of aciylonitrile and no kinetic effect of 02),^^ 

because radicals are not produced and Cfi* reacts with HCr04" even more rapidly than it 

does with 0%. 

Cr02+ + R2CHOH -4 Cr2+ + RgCO + H2O 

HCr04- + Cr2+ QV + Cr3+ 

2CrV -4 HCr04- + Cr02+ 

(31) 

(29) 

(28) 
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Oxidation of 1.2-diarvlethanols and cvclobutanol 

The presence of organic oxidative cleavage products when HCr04" oxidizes a 1,2-

diaryl- or 1,2-aiylalkylethanol,^'^ eq 32, or cyclobutanol,^ eq 33, has been inteipreted as 

evidence for a one-electron oxidation by Cr02+. 

HCrQj" 
ArCH(0H)Œ2Ar' • ArŒOAr' + (ArCHO + Ar'CH20H) (32) 

Oxidative cleavage is characteristic of one-electron oxidants such as Ce(IV).'*0 In previous 

work on Cr(IV) oxidations,39 cyclobutanol was the only alcohol studied which did not 

show a primary isotope effect, leading the authors to conclude that C-C bond cleavage is 

rate-determining. In the present study, cyclobutanol again behaves differently firam all the 

other alcohols, because its reaction with CrO^+ does not yield Cr^+ Also, the activation 

parameters for the cyclobutanol reaction are different, with larger and smaller AS^ 

compared to the values in otiier alcohol reactions. Table n-3. 

Iii order to reconcile these observations with the proposed mechanism in eq 23, let 

us consider two alternatives. Oxidative cleavage may result from a two-electron process; 

such reactions have been documented^ ^ but only when especially stable organic cations are 

formed. Two-electron oxidative cleavage of cyclobutanol would be unprecedented. 

Alternately, the CrO^+ may be capable of either one-electron or two-electron oxidation, 

depending on the organic reactant For simple primary and secondary alcohols, and even 

benzylic alcohols, formation of Cr2+ instead of Cr3+ is less expensive than production of 

alkyl radicals, and is favored by the stability of the aldehyde or ketone products. If the 



www.manaraa.com

71 

product ketone would be highly strained, as in the case of cyclobutanone, or if oxidative 

cleavage would lead to a stabilized alkyl radical, then Cr3+ and a hydroxyalkyl radical are 

formed instead. The change in mechanism is signalled by a change in the measured 

activation parameters, since hydrogen-atom transfer reactions usually have larger AH$ and 

smaller AS* values than do hydride transfer reactions.3l Therefore cleavage of 

cyclobutanol by a given oxidant does not indicate that all reactions of that oxidant are one-

electron processes, as was previously suggested.'*® However, in the case of CrO^+ 

oxidations, the presence or absence of the Cr02^^ product is definitive in determining the 

mechanism. 

Oxidation of (CH2CH2')20 

A unique property of hydride-abstracting reagents is the ability to oxidize ethers. 

While one-electron (hydrogen-atom abstraction) oxidation of an ether is very difficult 

compared to one-electron oxidation of a similar alcohol, hydride abstraction is feasible from 

both alcohols and ethers.'*^ The oxidation of di-isopropyl ether by MnO^- proceeds by 

hydride abstraction at almost the same rate as the oxidation of isopropyl alcohol.'*^ Wg 

have found that Cr02+ oxidizes (CH3CH2)20 twenty times more slowly than 

CH3CH2OH, but only 2.7 times more slowly than (Œ3)2CHOH. 

Mechanism of reaction of Ci02+ with aldehvdes 

The oxidation of simple aldehydes by H2CX)4'*^ and Cr(IV)45 has already been 

studied in some detail: the HCr04- oxidation ofHCHO induces the oxidation of Mn2+ with 

an induction factor (ratio of moles of Mn2+ oxidized to moles of aldehyde oxidized) of 0.5, 

implying that Cr(IV) is a reactive intermediate. The fate of Cr(IV) may have been oxidation 

by H2Cr04, one-electron oxidation ofHCHO yielding Cr3+, or two-electron oxidation of 
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HCHO to yield CP-*. No evidence was then available to distinguish between these 

alternatives. In the more recent study,the reaction of HCr04" with V0^+ was used to 

generate Cr(rV) in situ. Addition of an aldehyde to the reaction mixture decreases the yield 

of V02"^ without affecting the rate of loss of HCr04", which led the authors to conclude 

that the aldehyde reacts only with Cr(IV) and not with Cr(V). Based on the relative 

reactivity of various aldehydes, it was shown that aldehydes react exclusively in their 

hydrated forms. Since HCHO is essentially completely hydrated in aqueous solution, (K = 

1.8 X 103),46 the rate constant measured in this work, 91.7 L mol"^ s"l, is the rate constant 

for the reaction between 00^+ and CH2(OH)2. The mechanism of oxidation is hydride 

abstraction based on the observation of the inorganic product Cr02^+. The organic product 

is inferred to be HCOOH. 

The reaction of pivaldehyde with CrO^+ in the presence of O2 does not yield 

Cr02^+ but does give large amounts of radical cleavage products. A one-electron oxidation 

by hydrogen-atom abstraction, followed by elimination of CO from the pivaloyl radical, 

was suggested by RoSek and Ng because of a substantial primary kinetic isotope effect. 

The proposed reactions, which are in accord with out observations that Cr3+ and radical 

cleavage products are formed, is shown in reactions 34 - 35. 

Cr02+ + (CH3)3CCH0 -> CrOH2+ + (CH3)3CCO 

(CH3)3CC0 -> (CH3)3C- + CO 

(34) 

(35) 

The fate of tiie t-butyl radical depends on the O2 concentration.^? At low or zero [O2], the 

radical disproportionates to isobutane and isobutene. In oxygenated solutions die t-butyl 

peroxyl radical is formed, which then decomposes bimolecularly to the t-butoxyl radical. 
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This radical fragments to acetone and methyl radical, and the latter abstracts a hydrogen 

atom from pivaldehyde to become methane. 

Mechanism of rgaction Qf with HCQzH and UzCiOé. 

The formation of CrO^* in both of these reactions implies a two-electron, hydride-

transfer mechanism. The inverse acid-dependence is consistent with direct formation of 

CO2 from HC02' and as in eq 36 and 37. 

The rate constants kgg and ky j  are much larger than the rate constants for oxidation of 

HCO2H and H2C2O4, because the product, CO2. is formed directiy from HC02' and 

HC2O4' in the correct protonation state. The second-order kinetic term observed at high 

[H2C2O4] may be due to association of H2C2O4 in solution; such interactions have been 

previously noted.'*® 

CrCP+ is a versatile oxidant witii a half-life of ca. 30 seconds in 1.0 M HCIO4 at 25 

°C. It oxidizes alcohols, aldehydes and carboxylates by a two-electron mechanism in all 

cases except for cyclobutanol, where cleavage of the strained four-membered ring is 

favored, and pivaldehyde, where elimination of CO from the pivaloyl radical is preferred. 

The rate constants for all the alcohol and aldehyde reactions studied here are very 

similar, and the reactivity trends are inconsistent with the formation of alkyl radicals. The 

rate of oxidation of R2CHOH to R2CO depends slightiy on the steric bulk of R, which 

Cr02+ + HCO2- CrOH+ + CO2 

Cr02+ + HC2O4- -» CrOH+ + 2 CO2 

(36) 

(37) 

Summarv 
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suggests that prior coordination of the alcohol to Cr02+ may be required before hydride 

transfer occurs. 
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APPENDIX: REACTION OF Cr02+ WITH PPhg 

The 00^+ formed by syringe injection or stopped-flow mixing of Cr2+ and O2 

reacts readily with 0.01 - 0.04 M PPhg. The stoichiometiy of the reaction is 1:1, based on 

the absorbance change at 260 nm, where Ae = 1.3 x 10^ M"^ cm"l for the conversion of 

PPhg to 0=PPh3. 

Cr=:02+(aq) + PPh3 -> Cr2+(aq) + 0=PPh3 (38) 

In the presence of excess PPhg, the uv region is completely obscured, and the reaction was 

more conveniently studied using the reaction of CrO^+with ABTS^- as a kinetic probe. 

The formation of ABTS - occurs by the rate law of eq 39. 

-d[Cr02+]/dt = (ks [ABTS2-] + kgg [PPhg]) [Cr02+] (39) 

The rate constant kgg varies linearly with [PPhg], with a value kgg = (2.1 ± 0.2) x 10^ L 

mol'l s"l in 0.10 M HCIO4 / 85% Œ3CN at room temperature. Under the experimental 

conditions, reaction 38 is complete in less than 0.2 seconds, therefore the decomposition of 

Cr02+ does not contribute to the kinetics. The simplest mechanism for a two-electron 

oxidation of PPhs is an 0x0 transfer from 00^+. Other metal-oxo species, including a 

CrV 0x0 complex,^ are known to transfer oxygen to PPhs. The stoichiometry of the 

reaction ofPPhg with aquachromium(rV) supports its formulation as an 0x0 ion. 

While pure Ci02^+ does not react with PPhg, Ci02^* contaminated with Cr02+ 

does. When 0.2 mM Cr2+ was injected into a solution containing 1.3 mM O2 and 1.3 mM 
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PPhg, all of the PPhg was converted to 0=PPh3. The reaction is approximately first-order 

with a half-life of 8 minutes at 25 ®C in 85% Œ3CN/O.IO M HCIO4. Since Cr02+ does 

not live long enough to be the bulk oxidant on this timescale, the autoxidation of PPhg must 

be catalyzed by Cr02^"*'. A proposal for the catalytic chain is shown in Scheme 11-4. 

Scheme II 4. Mechanism for the CrOz^+'catalyzed autoxidation of PPhs 

Cr2+ + 02 -=5=  ̂ Cr022+ 

Cr02^+ + Cr2+ Cr02+ + (other Cr products) 

Cr=02+(aq) + PPhg -> Cr2+(aq) + 0=PPh3 

(9) 

(2) 

(38) 
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SECTION in 

REVERSIBLE REDUCTION OF A DICHROMIUM-SEMIQUINÔNE 

COMPLEX PREVIOUSLY MISIDENTIFIED AS THE ^i-OXO DIMETALLIC 

ION, CrOCH+ 



www.manaraa.com

84 

ABSTRACT 

The complex described in the literature as the |i-oxo complex, (H20)5Cr0Cr(H20)5^, 

is shown to be a dichromium(in) semiquinone complex, (H20)5Cr0C6H40Cr(H20)5^+. It is 

prepared by the reaction of 1,4-benzoquinone with 0*2+ in acidic, aqueous solution. The 

reaction also yields Cr(H20)6^+ and a dichromium(in) hydroquinone complex of 4+ charge. 

The semiquinone complex is reversibly reduced by outer-sphere electron transfer to the 

dichromium(ni) hydroquinone complex, (H20)5Cr0C6H40Cr(H20)5^. Any of Cr2+, 

Ru(NH3)62+, or accomplishes this reduction. The hydroquinone complex is reoxidized 

by Fe3+, 1,4-benzoquinone, Br2 or Ce(IV) to the semiquinone complex. Cyclic 

voltammograms obtained with either the hydroquinone complex or the semiquinone complex 

are identical, and correspond to a reversible, one-electron process. The standard reduction 

potential of tiie semiquinone complex is +0.61 V (NHE). The semiquinone complex 

decomposes, over a period of hours, by aquation of Cr(III) followed by disproportionation of 

the organic ligand, yielding hydroquinone, benzoquinone and Cr(H20)63+. A literature report 

of die quinone oxidation of ethanol catalyzed by Cr3+ can now be interpreted correctly in terms 

of the reversible formation of the coordinated semiquinone radical complex. 
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INTRODUCTION 

The preceding work in this manuscript on the various intermediates formed during the 

reaction of Cr(H20)6^''" with O2 inspired an investigation of the involvement of 

(H20)5Cr0Cr(H20)5'*+, hereafter CrOCy*+. This species is a natural candidate for the product 

of the reaction between the recentiy-prepared CiO^+(aq)^ and Cr^t However, CrOCr^ has 

not been observed in this reaction or in any other reactions of Cr2+ with 02-^ It was reported 

as one of several major products during a mechanistically ill-defined reaction between G2+ and 

1,4-benzoquinone in aqueous perchloric acid, and as the product of oxidation of a 

dichromium(ni) hydroquinone complex.^ This product is unusual in that has an intense visible 

spectrum with several narrow peaks. Moreover it is a good but irreversible oxidizing agent, 

with E° given as + 0.54 V(NHE).4 Neither of these properties is characteristic of inorganic 

Cr(ni) species and thuspecial electronic interactions within a linear Cr-O-Cr unit were invoked. 

The so-called CrOCr^+ ion was also claimed to decompose irreversibly to Cr3+ in a reaction 

catalysed by H+ or by reductants such as Cr2+.4.5 

In this work, the intense and narrow visible bands actually belong to a complex 

containing the coordinated semiquinone radical, whose correct formula is Cr0C6H40Cr5+, 

presumably with water molecules in all the remaining coordination positions. Evidence is 

presented here to support this formulation. The reduction of the semiquinone complex yields 

the dichromium(III) hydroquinone complex, and is fully reversible. Coordination of 

semiquinone to two Cr(in) ions greatly stabilizes the semiquinone radical, which would 

otherwise disproportionate very rapidly in acidic solution. A proposed mechanism for the 

eventual disproportionation, limited by the low rate of aquation of bound Cr3+, is given. 

The new level of understanding of the spectra and redox properties of the 

hydroquinone- and semiquinone-bridged dichromium complexes permits a reinterpretation of 

some early results on the Cr3+-catalyzed quinone oxidation of etiianol. 
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EXPERIMENTAL SECTION 

Because the literature assignments of the two chromium complexes in this study will be 

disputed in this chapter, the original labels will be used to describe their preparation and 

reactivity. Complex I is tiie species described by Holwerda and Petersen^ as a dichromium(in) 

hydroquinone complex, although with a stmcture different from the one propose here. 

Complex ri is identical to the proposed CrOCr^ ion, for which an entirely different 

composition has been found. Both Complex I and Complex n were prepared by a slight 

modification of the literature procedure.^ Yields of both complexes were found to be much 

higher when a 2:1 rather than a 1:1 mole ratio of Cr2+: 1,4-benzoquinone was used. 1,4-

Benzoquinone (65 mg; 0.6 mmol) was dissolved in 2 mL CH3CN and diluted to 100 mL with 

0.1 M aqueous HCIO4. This solution was thoroughly deaerated with argon, then 1.2 mmol 

Cr2+ was added dropwise by syringe. The solution containing the products was loaded onto a 

column of ice-cooled Sephadex SP C-25 cation-exchange resin. The column was rinsed 

repeatedly with 0.1 M HCIO4 to remove uncoordinated benzoquinone and hydroquinone, 

which were retained by the resin more strongly than expected for uncharged species. Because 

this procedure took some two hours, the Complexes I and n decomposed slightly on the 

column, liberating more free hydroquinone as well as Cr^t Therefore, to obtain samples of 

highest purity botii complexes were eluted witii 0.10 M HCIO4/O.9O M LiC104 and then re-ion-

exchanged. Complex I eluted as a dense dark green band followed by a diffuse yellow-green 

band of Complex H. Complex n was used immediately, since it decomposes completely 

within a few hours. Complex I was frozen and used over the course of the next tiiree days. 

To obtain fresh samples of Complex H, Complex I was oxidized with Bi^ and then ion-

exchanged again to remove any uncoordinated quinone species and Cr3+. 

Solutions of RU(NH3)62+, Cr2+ and V2+ were prepared by reducing air-free, acidic 

aqueous [Ru(NH3)6]Cl3, Cr(C104)3 and V0(C104)2, respectively, over Zn/Hg. Fe(C104)3 
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was prepared by dissolving FeClg 6H2O in conc. HCIO4 and evaporating HCl until the 

solution gave a negative test for CI' with AgNOg. Total chromium was analyzed by the basic 

H2O2 method.^ Hydroquinone and benzoquinone were quantified spectrophotometrically (k 

290 nm, e 2.3 x 10^ M"^ cm'l and A, 248 nm, e 2.14 x lO^ M"1 cm"l, respectively).^.^ Br2 

was standardized spectrophotometrically (A, 392 nm, e 175 M"1 cm-^).9 

Electronic spectral measurements, spectrophotometric titrations and kinetic runs were 

performed on a Shimadzu UV-3101PC Scanning Spectrophotometer equipped with a 

thermostatted cell-holder. First-order rate constants were obtained firam the slopes of plots of 

log (A-Aoo) versus time. Cyclic voltammetiy was performed on a BAS-100 Electrochemical 

Analyzer with a freshly-polished glassy carbon working electrode and a Ag/AgCl reference 

electrcxle containing saturated NaCl. 
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RESULTS 

Composition 

The composition of Complex I was established by analysis of a decomposed sample for 

hydroquinone and total Cr. The solution contained 3.6 mM hydroquinone and 7.6 mM total 

Cr, confirming the original assignment of a 1:2 hydroquinone-chromium complex.^ Extinction 

coefficients were determined from the spectrum of the solution, Figure la, immediately after 

ion-exchange, and are given in Table m i. The values are slightly higher than those given in 

the previous work.3 Doubly-ion-exchanged Complex II was analyzed for total Cr, and the 

resulting extinction coefficients are also shown in Table ni-l. The very high extinction 

coefficients in the visible region and the shaipness of the bands (Figure lb) are unique. They 

set Complex H apart from almost every other known chromium(ni) complex. 

Reversible redox chemistry 

A sample of 0.19 mM Complex I, Figure la, was oxidized with one equivalent of 

Fe3+. The spectrum of Complex n developed over several minutes. Figure lb. Its 

concentration was also 0.19 mM, based on the independenfly-determined extinction 

coefficients. The solution of Complex n was deaerated with argon and an equal concentration 

of Cr2+ was added. The spectrum of 0.19 mM Complex I was recovered quantitatively. 

Figure Ic. The addition of Fe^ followed by Cr^+ was repeated several times and the same 

reversible spectral changes were observed, eq 1-2. 

Complex I + Fe3+ -> Complex n + Fe2+ 

Complex II + Cr2+ -> Complex I + Cr3+ 

(1) 

(2) 
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Figure IH-I. Reversible spectral changes upon oxidation of Complex I and. reduction of 

Complex H: (a) spectrum of 0.19 mM Complex I in 0.10 M HCIO4/O.9O M 

LiC104, in a 1 cm cell; (b) spectrum of Complex n obtained by adding Fe3+ to 

the solution of Complex I; (c) spectrum of Complex I obtained by adding 

Cr2+ to the deaerated solution of Complex H. 
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Table III-l. Spectral bands and extinction coefficients for free quinones and quinone 

complexes, CrQCr^+ and CiQCr^ 

Chromophore AmaxjUim g/M-^cm-la— Reference 

1,4-benzoquinone 248 2.14x104 8 

hydroquinone 290 

221 

2.3 x 103 

4.4x103 

semiquinone radical anion 458 

428 

406 

325 

9.4 X 103 

7.5 X 103 

4.7 X 103 

2.5 X 104 

10 

CrQCr4+ (complex I) 599 

292 

224 

2.4 X 102 

6.50 X 103 

1.00x104 

this work 

CiQCr5+ (complex H) 634 

585 

443 

413 

350 

226 

4.6 X 102 

5.5 X 102 

7.52 X 103 

5.84 X 103 

1.19x104 

9.32 X 103 

this work 

® For Complexes I and H, extinction coefficients arc given per mole of complex, i.e., 

per two moles of chromium. 
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The yield of Complex II from a solution of Complex I decreases as the time delay between 

addition of Cr2+ (to form Complex I) and the addition of Fe3+ increases. After 2 hours, only 

73% of Complex II was obtained. Based on the rate constant for the decomposition of 

Complex I (see below), a yield of 15% is predicted. 

Qualitatively, the same spectral changes were observed using Br2, Ce(IV) or 1,4-

benzoquinone as the oxidant and either Ru(NH3)6^+ or V2+ as the reductant. However, the 

Br2 and Ce(IV) oxidations produce Complex II quantitatively only when Complex I is in 

excess, because of overoxidation (see below). Fe^+ does not reduce Complex n. 

To establish the stoichiometry of the reversible redox reaction, two spectrophotometric 

titrations were carried out. The addition of 0.036 mM Brz to a solution containing 0.236 mM 

Complex I resulted in the formation of 0.068 mM Complex 11. Continued addition of Br2 did 

not lead to 100% yield of complex n, but did cause formation of a peak at 248 nm attributed to 

free benzoquinone. However, the stoichiometry of the reaction when B12 is not in excess is 

clearly 1 Bi^ '• 2 Complex I, contrary to the original assignment of 1 Br2:1 Complex 1.3 

Doubly-ion-exchanged Complex II was titrated with Cr2+, and a clean endpoint was observed 

at 0.90 Cr2+ : 1 Complex H, Figure 111-2. This result to be identical within the experimental 

error to a 1:1 endpoint since Complex n is not completely stable on the timescale required for 

these manipulations. 

Electrochemistry 

Cyclic voltammetry was performed separately on samples of pure Complexes I and H. 

Both complexes show identical quasi-reversible cathodic and anodic waves, Figure 3. The 

peak positions and intensity ratios are given in Table II. The average position of the cathodic 

and anodic peaks yields a reduction potential of 0.61 V (NHE) in 0.10 M HCIO4/O.9O M 

LiC104. 
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Figure 111-2. Spectrophotometric titration of airfree 0.195 mM Complex n with 0*2+ in 

0.10 M HCIO4/O.9O M LiClO^. Optical pathlength 1 cm. 
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Figure ni-3. Cyclic voltammograms of (a) Complex I, and (b) Complex H, in 0.10 M 

HCIO4/O.9O M LiClO^ at a glassy carbon working electrode and a Ag/AgCl 

reference electrode. Both complexes were purified by ion-exchange. 
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Table ni-2. Electrochemical data for CrQCr^+ and CrQCr5+ a 

Complex Ep,c/mV Ep^/mV ^ Ip,c/Ip4 

CrQCr4+(complex I) 678 791 0.961 

CrQCr5+ (complex H) 692 768 0.974 

® Obtained at a glassy carbon working electrode versus a Ag/AgCl reference electrode. 

Solutions contained 0.10 M HCIO4/ 0.90 M LiC104 and air. Sweep rate 50 mV/s. 

b All potentials are given relative to the standard hydrogen electrode. 

Kinetics 

The kinetics of reduction of Complex n with Cr2+ and Ru(NH3)62+ have already been 

reported.^ A few of these experiments were repeated and essentially the same results were 

obtained: kcr = 1.8 x 10^ L mol"^ s"^ and kRu too fast to measure by stopped-flow. The 

kinetics of oxidation of Complex i have not been examined, so a study of the reaction between 

Complex I and Fe3+ was undertaken. In tiie presence of a pseudo-first-order excess of Fe3+, 

an exponential increase in absorbance at 443 and 350 nm was recorded. When aged samples 

of Complex I were used, a biphasic absorbance increase was observed. The rate constant for 

the slower phase, 28 L mol"^ s"^ is similar to that observed for the oxidation of free 
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hydroquinone by Fe^+.S The rate constant for the faster phase, which is the direct reaction 

between Fe3+ and Complex I, is linearly dependent on the concentration of excess Fe3+, with a 

slope of 1.5 X 102 L mol'l s'l in 0.10 M HCIO4/O.9O M LiClO# at 25.0 °C. 

The kinetics of the decomposition of doubly-ion-exchanged Complexes I and II were 

studied by following the loss of absorbance at 290 and 443 nm, respectively, in 0.10 M 

HCIO4/O.9O M LiC104 at 25 °C. Both processes were first-order. The rate constant for 

decomposition of Complex I is 3.9 x 10"^ s*^ and for Complex H is 2.4 x 10^ s"l. The latter 

number agrees with the previously-determined value for Complex II at this pH.5 The acid-

dependence found in previous work was therefore not investigated further. 

Decomposition products 

The spectrum of a solution of decomposed Complex I contains two very weak bands in 

the visible region at 574 and 406 nm and two intense peaks in tiie uv at 288 and 221 nm. The 

positions and intensities of the visible peaks are consistent with Cr3+ as the sole inorganic 

product. The positions and intensities of the uv peaks match exactiy those for hydroquinone. 

The spectrum of a solution containing decomposed Complex n has all the peaks 

described above and an additional peak at 248 nm, the maximum for 1,4-benzoquinone. 

Evidence that this peak is actually due to 1,4-benzoquinone was obtained by addition of Cr2+ 

to the nearly colorless decomposed solution. The yellow-green color and the characteristic 

intense spectrum of Complex H reappeared immediately, as in the reaction of Cr2+ with 

authentic 1,4-benzoquinone. The total amount of quinone (0.20 mM hydroquinone + 0.10 

mM benzoquinone) found in the decomposed solution is essentially equal to the initial amount 

of Complex n, 0.29 mM, originally present. Only slightiy more benzoquinone was found in a 

more rapidly decomposed solution of Complex H in 1.0 M HCIO4. Because tiie amount of 

Complex n was calculated from extinction coefficients which are based on analysis of total 
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chromium, the analysis of the decomposed solution confirms the stoichiometry of Complex n 

as a 2:1 complex of chromium and a quinone species. 
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DISCUSSION 

The nature of Complexes I and n 

The previous finding that Complex I is a 2:1 complex of Cr and hydroquinone has been 

confirmed by these experiments, and its ion-exchange behavior indicates that its charge is +4. 

However, the findings regarding the nature of Complex H arc significantly different from the 

previous study. In that work, the oxidation of Complex I toll was reported to be irreversible 

with liberation of free p-benzoquinone into solution.3 The authors also claimed that Complex 

n contains no coordinated quinone. On the basis of a similarity with the spectrum of the basic 

rhodo ion, (NH3)5CrOCr(NH3)54+, the formula (H20)5Cr0Cr(H20)54+ was assigned to 

Complex n. The latter was claimed to decompose to 0*3+ in a reaction catalyzed by Cr2+ and 

Ru(NH3)6^+. The proposed reactions are shown in Scheme I, eq 3-6.3.4 

Scheme m i. Proposed formation and catalyzed aquation of CrOCr4+ 

H I 

(H20)4CO(H20)4 
•n* O 

O 

(H20)5Cr-0-Cr(H20)5' 

Complex II 

OH 

Complex I 

+ 2 Br- + 2 H+ 

(3) 

(H20)5Cr0Cr(H20)54+ + C^d ^ (H20)5Cr0Cr(H20)53+ + Cox 

(H20)5Cr0Cr(H20)53+ + H2O + 2H+ ^ Cr(H20)62+ + Cr(H20)63+ 

Cr(H20)62+ + Cox Cr(H20)63+ + Cred 

(4), 

(5) 

(6) 
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In Scheme I, Cred and Cox are the reduced and oxidized forms of the catalyst which is 

supposed to catalyze the hydrolysis of Complex H to Cr^t For example, C^d may be either 

Cr2+ or Ru(NH3)6^+. The products of the reaction of Cr2+ with Complex n were subjected to 

ion-exchange. A blue 3+ species was identified as Cr3+ and a green 4+ species was presumed 

to be Cr(0H)2Ci^+ resulting from aerobic oxidation of the Cr2+ catalyst during workup. As 

reported above and discussed later, this green 4+ species is actually Complex I, and the 

reaction of Complex II with Cred is actually a stoichiometric (not catalytic) reduction to 

Complex I. The latter is more stable towards hydrolysis than Complex II and is not further 

reduced by Cr^t 

The results obtained here require an inteipretation different from the above proposal for 

the nature of Complex H. It is an intact one-electron-oxidized product from the hydroquinone 

Complex I, as demonstrated by the complete reversibility of the chemical reactions and by the 

peak-to-peak separations observed in the cyclic voltammograms. The quinone ligand must still 

be coordinated, and in fact the spectrum of Complex n resembles that of the unbound 

semiquinone radical anion, whose spectral characteristics are given in Table HI-l.^O The 

intensities of the peaks of Complex H, Table m-l, are also comparable to those of the 

semiquinone radical anion. In contrast, the visible spectrum of the basic rhodo ion, 

(NH3)5CrOCr(NH3)54+, while intense, is considerably weaker, with an extinction coefficient 

of 650 L'l mol Cr^ cm*^ at 325 nm.^^ Analogs of the basic rhodo ion with the ammine 

ligands replaced by aromatic ligands such as tris(2-pyridyhnethyl)amine or bipyridyl have 

higher extinction coefficients, but none of these complexes can be reduced. jhg only 

electrochemical features they possess are reversible oxidation waves. Therefore the extent of 

similarity between Complex H and known |i-oxo bridged dichromium(ni) species is small. 

The mechanism of reduction of Complex II by Cr2+ and Ru(NH3)6^+ was 

convincingly argued to be outer-sphere.^ Although Cr2+ (E°3+/2+ = -0.41 V) is a much better 
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reductant than Ru(NH3)62+ (E°3+/2+ = +0.06 V), the rate constant for Cr2+ reduction is 

approximately one order of magnitude smaller than for Ru(NH3)6^+ reduction. This reactivity 

order is not observed when Cr^+ can react by an inner-sphere mechanism, but it is quite 

common when the reaction is perforce outer-sphere, because the self-exchange rate constant for 

the G2+/Q.3+ couple is so low, ^ 2 x 10'^ L mol"^ s"1.13 if the proposed structure for 

Complex I, eq 3, were correct, then reversibly-formed Complex H must also have both Cr(in) 

ions coordinated to the same oxygen atom of semiquinone, leaving most of the radical character 

of the semiquinone on the uncoordinated oxygen. It is difficult to believe that Cr2+ would 

ignore such an opportunity for an inner-sphere pathway and instead choose to react by an 

outer-sphere mechanism. It is more probable that Complexes I and n contain quinone 

coordinated at both oxygens, as in Scheme II. 

Scheme 111-2. Structure and reversible oxidation of a dichromium(ni) hydroquinone 

complex 

(H20)5Cr —14+ (H20)5Cr —15+ 

4= 'IK 
^^^^0-Cr(H20)5 ^0-Cr(H20)s 

Complex I Complex II ^-7^ 

This structural type was previously proposed for the product of the reaction between 

Co(CN)53- and 1,4-benzoquinone, (NC)5CoOC6H40Co(CN)5^,^^ as well as for the product 

of reaction of Cr^+ with various substituted quinones.15 Moreover, if we consider the 

stepwise process by which Complex I is formed, starting with a 1:1 reaction of Cr^+ and 1,4-
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benzoquinone,2b the first intermediate would be the mononuclear semiquinone radical complex 

shown in eq 8. 

" °=G)" o 
—12+ 

(HgOjgCr-O-^^O. 
(8) 

The rate constant for this reaction was determined by pulse radiolysis to be 3.2 x 10^ L mol'l s" 

16 The product of eq 8 seems more likely to react with a second Cr2+ at the uncoordinated 

oxygen radical to yield the Complex I shown in Scheme n than at the oxygen coordinated to Cr 

to yield the structure in Scheme I. Finally, Complex H is formed in the reaction between Cr2+ 

and 1,4-benzoquinone by the in situ oxidation of Complex I by benzoquinone. The feasibility 

of this reaction was tested independentiy, showing and an ion-exchanged sample of Complex I 

was converted to Complex H when benzoquinone was added. 

Reduction of Complex H does not lead to rapid aquation to Cr(H20)6^+, as previously 

suggested. The Cr3+ product is formed directiy from the Cr2+ reactant and the green 4+ 

product is Complex I, eq 2. Although the colors and ion-exchange properties of Complex I 

and the Cr(0H)2O4+ ion are very similar, the product spectrum is clearly not that of 

Cr(0H)2Cr4+ Therefore Complex I must have the formula Cr0C6H40Ci^+, or simply 

CrQCr4+, and Complex II must be Cr0C^H40Cr^+, or CiQCr5+. The reversible oxidation of 

aqual5 and azamacrocyclic^  ̂chromium-hydroquinone complexes has been previously noted. 

Redox chemistrv 

The one-electron reduction potential of free hydroquinone E°(HQ-/H2Q) is 1.04 V at pH 

0.18 This potential is strongly pH-dependent because of the difference in protonation levels 

and the acidity constants of both species (pKi = 9.85, pK2 = 11.4 for H2Q and pK = 4.1 for 
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HQ ).8.18 At pH 14, where both hydroquinone and semiquinone are fully deprotonated, the 

lower potential E(Q-/Q^ ) = 0.023 reflects the increasing ease of oxidation of hydroquinone 

once the proton barrier is removed. Then by comparison, hydroquinone coordinated as Q^- is 

much more difficult to oxidize than free Q^*, given that (CiQCr^+ZCrQCr^) = 0.61 V. This is 

true not only for CrQCr^+, but also for (NQsCoOCgft^OCoCCN);^-, where no oxidation 

wave for the hydroquinone complex was observed at potentials up to +1.1 The increased 

stability of coordinated hydroquinone in (NC)5CoOQH40Co(CN)56- towards oxidation was 

attributed to both a coordination effect, since binding to cobalt(in) increases the 

electronegativity of the oxygen atoms, and interaction of the TU levels of the ligand with the 7T* 

levels of the Co(CN)5 groups, which effectively stabilizes the ligand HOMO. 

Ouinone oxidation of ethanol catalyzed bv chromic ion 

The reactions and spectral changes observed during the quinone oxidation of ethanol 

catalyzed by Cr^f 15 are now understandable in terms of the chemistry proposed here. A green 

species, G, was observed but not correctly identified in the reaction of Cr2+ with 2,5-

dihydroxy-1,4-benzoquinone, H2Q'. G has the distinctive spectrum of a semiquinone radical 

complex. 

(Q')2-

2Cr2+ + (Q-)2- CIQ'Cr2+ _> CrQ'Cr3+ (9) 

G 

G is also formed when Cr3+ and H2Q' are combined in ethanol solvent. In this reaction, 

ethanol is oxidized to acetaldehyde simultaneously with formation of G, eq 10-11. Oxygen 
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slowly oxidizes G, eq 12, to a red species, R, which is probably a chromium-quinone 

complex. R then oxidizes more ethanol, creating a catalytic cycle. 

Coordinative stabilization of radicals 

Coordination of radicals to metal ions sometimes leads to impressive stabilization of the 

radical species. The reaction of 0*2+ ^îtii various substituted pyrazines leads to long-lived 

complexes of Cr(III) with the pyrazine radical anion, whose reducing ability is much lower 

than that of the unbound radical anion.^O Reaction of O2 with gives Cr02^+, a stable 

superoxochromium(ni) ion whose uv spectrum resembles that of the free superoxide radical.^ 

Coordination of the semiquinone radical to Cr(in) greatiy enhances the stability of the radical 

towards disproportionation. Whereas free semiquinone disproportionates by a second-order 

process at nearly the diffusion-controlled rate (kj = 1.1 x 10^ L mol"^ s"^ for HQ- + HQ , and 

kd = 1X 10® L mol'l s-1 for Q- + Q- ),2l the dichromium(III) semiquinone complex, CrQCr^+, 

decomposes in a slow first-order process which is acid-catalyzed.^ Rate-limiting acidolysis, a 

common process in substitutionally-inert Cr(III) complexes witii organic ligands, was 

suggested as the first step. The products of acidolysis would be Cr3+ and the mononuclear 

semiquinone-Cr(in) complex shown in eq 8. The mononuclear complex may 

disproportionate, eq 13, or release quinone by internal electron-transfer, eq 14. The latter 

2 Cr3+ + (Q')2- _> CrQ'Cr4+ 

2CrQ'Ci4+ + CH3CH2OH ^ 2CiQ'Cr3+ + CH3CHO +2H+ 

4 CrQ'Cr3+ + O2 + 4 H+ -> 4 CiQ'Cr4+ + 2 H2O 

(10) 

(11) 

(12) 

G R 
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reaction is analogous to the decomposition reactions of the Cr(III)-pyrazine radical 

complexes.̂ o 

2CIQH3+ CIQ3+ + CrQH2+ + H+ ^ 2Cr3+ + Q + H2Q (13) 

QQH3+ Cr2+ + Q •+ H+ (14) 

The Cr2+ product of eq 14 may react with quinone by an inner-sphere mechanisnr, 

regenerating the mononuclear semiquinone complex, or by an outer-sphere electron transfer, 

yielding Cr3+ and free semiquinone radical anion. In either case, the product ratio of 

hydroquinone; benzoquinone is expected to be 1:1. However, spectral analysis of the product 

solution showed more hydroquinone than benzoquinone. A blank experiment revealed that the 

248 nm peak of 1,4-benzoquinone in 0.10 M HCIO4 decreases in intensity by 30% in 24 

hours, with concurrent formation of peaks at 221 and 290 nm. The positions and intensities of 

these peaks (probably due to 1,2,4-trihydroxybenzene)^ are very similar to those of 

hydroquinone. This spontaneous decomposition of benzoquinone can account for most, but 

not all, of the "missing" benzoquinone among the products of decomposition of CiQCr^+. 

Coordination to Cr(III) apparentiy enhances the rate of spontaneous decomposition of 

benzoquinone in aqueous solution. 
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GENERAL SUMMARY 

The superoxochroniiuni(in) ion, Cr02^+, is an efficient catalyst for the autoxidation of 

CrŒ20H2+. In the presence of sufficient 0% to trap the Cr^+ product, CrCH20H^+ is 

converted quantitatively into C1O2H2+. The latter species is an end-bonded 

hydroperoxochromium(in) ion, characterized for the first time in this work. In the absence of 

O2. a stoichiometric chain reaction occurs, in which Cr02^+, CrCH20H2+ and also free 

CH3OH are consumed. The oxidation of CH3OH is attributed to a chronaium(rV) intermediate, 

Cr02+. This process results in stabilization of Cr02^+ under aerobic conditions, and much 

higher concentrations of Cr02^+ are now accessible because of it 

Formation of bulk quantities of CrO^+ was accomplished both aerobically and 

anaerobically. CrC)2+ oxidizes PPhs to 0=PPh3 by 0x0 transfer in a reaction witii a 1:1 

stoichiometty. The reaction of Cr02+ with various alcohols, aldehydes and carboxylates was 

studied using the formation of Cr02^+ as a spectroscopic probe. Most are two-electron 

reactions, with no evidence for formation of alkyl radicals. The generally-accepted mechanism . 

for HCr04" oxidation of alcohols was revised in light of this direct evidence for one of the 

intermediate steps. 

The "CrOCr^" ion was shown to be a semiquinone radical-bridged dichromium ion, 

CrQCr5+. This species undergoes reversible electrochemical and chemical reduction. 

Coordination to chromium stabilizes the semiquinone radical, and no direct disproportionation 

of the complex was observed. Instead, the complex decomposes by rate-limiting aquation to 

Cr3+ and a mononuclear chromium(III)-semiquinone complex. 
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